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Abstract: 

This research offers a numerical evaluation of the dependability and availability of a serial butter-oil 

production line from a mechanical engineering standpoint. The line consists of essential rotating and fluid-

handling subsystems—raw-milk receiving pumps, cream separators, heat exchangers, mechanical 

agitators, homogenizers, gearboxes, and conveying components—whose mechanical integrity 

significantly influences throughput and quality. We describe the production train with continuous-time 

Markov chains (CTMCs) derived from a reliability block diagram (RBD) illustrating series dependencies and 

maintenance strategies. Component-level failure (λ) and repair (μ) rates, obtained from realistic duty 

cycles and mechanical failure modes (bearing wear, seal leakage, misalignment, lubrication starvation, 

cavitation, fouling, and thermo mechanical fatigue), are transmitted to system-level metrics through 

state-transition analysis. Numerical simulations provide mean time between failures (MTBF), mean time 

to repair (MTTR), and steady-state availability for the whole system and for mechanically critical 

subsystems (e.g., pump-valve trains and homogenization units). Sensitivity studies pinpoint availability 

constraints and prioritize mechanical parameters—bearing L10 life, seal MTBF, lubricant change interval, 

alignment tolerance, and cooling-water ΔT—based on their effect on throughput reduction. The findings 

indicate that modest enhancements in repair logistics for high-criticality assets (such as the installation of 

cartridge seals and quick-release couplings on feed pumps) may surpass significant MTBF reductions in 

low-criticality components. We further illustrate that the integration of mechanical condition monitoring 

(vibration and temperature trending) with SPC-based run charts and control limits stabilizes critical 

mechanical variables (overall vibration, RMS acceleration, and discharge pressure ripple), thereby 

diminishing special-cause variation and unplanned downtime. The study concludes with maintenance 

strategies designed for mechanical assets, including spares pooling for common failure categories, 

precision alignment, optimized lubrication practices, and threshold-based condition-directed overhauls, 

resulting in quantifiable improvements in line availability and energy efficiency while maintaining butter-

oil quality standards. 
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Despite the greatest efforts of academics and stakeholders, no system can be completely dependable. 

Therefore, two additional factors known as availability and maintainability have come into prominence 

due to the growing complexity of modern technology. In order to ensure ongoing and extended 

availability, maintenance is an essential preventative and corrective intervention. Maintainability is the 

likelihood that the system will function normally again within the allotted time frame following the 

completion of repairs in accordance with the stipulated condition. The idea of maintainability is linked to 

availability. The likelihood that the system will function within a specific time frame is referred to as 

availability. It refers to the percentage of time that the system is usable, excluding downtime (while 

undergoing maintenance). 

If management wants their complex systems to be as reliable as possible, meeting worldwide standards 

and generating the predicted profit, they must detail the availability and cost of each component's 

reliability. More recently, a number of scholars have proposed availability allocation models as a means 

to minimize the system's total costs. The system's set availability, which is already attained after 

optimization according to another method, acts as a limitation. There are two main types of availability 

models: (a) those that aim to provide an accurate model of system availability, and (b) those that, in 

response to system needs, assign availability to specific components. The primary goal of this article is to 

save costs while achieving the minimal performance requirements of each component. This may be 

achieved by making sure that each component is designed to avoid failure or by allocating redundancy 

appropriately. Problems with reliability optimization have been the focus of a number of academic 

investigations. The impact of common cause shock failures and individual failures on the availability of a 

repairable system was highlighted by Verma and Chari [1], who also established related equations. When 

expanding distribution networks, Ramirez and Bernal [2] utilized Evolutionary Algorithm to optimize costs 

and ensure dependability. Using a Markov model and an exponential distribution, Upreti [3] suggested a 

stochastic study of a heating boiler system that is susceptible to preventative maintenance and repair. 

In their research, Garg and Sharma [4] investigated the dependability, availability, and maintainability of 

the synthesis unit in the fertilizer plant. They also conducted an analysis of these factors. With the help of 

GWO, a variety of multi-objective and single-objective problems, both limited and unconstrained, have 

been effectively addressed, resulting in competitive outcomes. Using the GWO approach, Fouad et al. [5] 

discovered an extra number of nodal locations that were next to one another. The multi-layer perception 

neural networks were trained with GWO by Mosavi et al. [6], who used three different data sets to train 

them. These data sets included iris, lenses, and sonar. Gupta and Saxena [7] utilized GWO in order to 

discover the parameters that were necessary for the effective autonomous power dispatch in two 

locations that were linked. On the other hand, Jaya Bharati and colleagues [8] utilized crossover and 

mutation when working with GWO to answer the challenge of cheap power transmission. For the purpose 

of minimizing the fuel cost and avoiding the hazard zones in the (unmanned) ACV dilemma, Zhang et al. 

[9] utilized the GWO approach. Using binary and mutant GWO techniques, Manikandan et al. [10] 

performed gene selection on the micro array data with the intention of selecting genes. The non-convex 

economic load dispatch problem was addressed by Kamboj et al. [11], who presented the GWO algorithm. 

Mirjalili et al. [12] came up with the idea of Multi–Objective GWO, which involves incorporating an archive 

that defines the global optimum solution into the first GWO in order to ret ravel the Pareto Optimal 

solution. GA and fuzzy logic were presented by Kumar A [13] as a means of improving the dependability 

of industrial systems. Because of its very efficient findings, Kumar et al. [14] utilized GWO for the purpose 



SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

 

of optimizing the dependability of complex systems. Specifically, they were able to optimize the cost and 

reliability of the life support system in a space capsule as well as a complicated bridge system. Additionally, 

Kumar et al. [15] suggested the use of GWO for the purpose of comparing and analyzing the availability 

and cost of engineering systems that are distributed in a series arrangement. In their subsequent work, 

Kumar et al. [16] advocated the utilization of GWO for the safety system of a nuclear power plant in order 

to maximize the cost-effectiveness of the residual heat removal system while maintaining its 

dependability. Negi et al. [17] provided an overview of the numerous forms and hybrids of GWO, as well 

as applications of various GWO applications. In their study, Uniyal et al. [18] provided a comprehensive 

review of the dependability applications of a few Nature-inspired optimization strategies. In order to 

tackle challenges involving the optimization of the dependability of complex systems, many types of GWO 

have been presented, and the results have been extremely competitive. WSNs are one example of this. 

The Modified Discrete GWO (MDGWO) algorithm was suggested by Li et al. [19] for the purpose of multi-

level picture thresholding. This algorithm involves the use of the optimized function Kapur's entropy in 

conjunction with the discrete character of the threshold values. In their paper [20-22], Mirjalili and 

colleagues developed Multi-objective GWO (MOGWO), which is a method for tackling global engineering 

issues that makes use of Pareto-optimal solutions. The Chaotic GWO [23] and the Refraction Learning 

GWO [24] are two other examples of the diverse types. According to the there is no such thing as a free 

lunch theorem [25], there is no one meta-heuristic that can handle all of the difficult optimization issues. 

The technique of solution for a nonlinear system of equations that makes use of met heuristics was 

proposed by Pant et al. [26]. Additionally, Pant et al. [27] suggested a more sophisticated method of using 

the Particle Swarm optimization technique to the optimization of dependability. In addition to this, they 

[28] have suggested doing a review of the current state of the art on the development of the algorithm 

for flower pollination. The multi-objective particle swarm optimization (MOPSO) approach was also 

utilized by Pant et al. [29] in order to solve the reliability optimization challenge. Pant et al. [30] adapted 

PSO for nonlinear optimization. The decomposition approach was originally introduced by Li and Haimes 

[31] with the purpose of improving the dependability of big complex systems. Developed by Kennedy and 

Eberhart [32], PSO has been utilized to address a wide variety of engineering issues that are encountered 

in the real world, resulting in highly competitive outcomes. With further study, Coelho [33] addressed 

reliability-redundancy optimization utilizing an effective PSO technique for mixed integer programming. 

Using CSA, Kumar et al. [34] were able to overcome the difficulties of reliability optimization that were 

associated with complex systems. Baskan [35] suggested using CSA with L'evy Flights to optimize road 

network connection capacity additions. The CSA was proposed by Buaklee and Hongesombut [36] to 

optimize DG allocation in a smart distribution grid. 

The ingredient commonly used in Nepalese cuisine, "butter-oil" is actually just melted butter that has 

been refined. It is one of the most essential components of traditional Nepalese cuisine, and eating it 

regularly helps maintain a healthy and fit physique. Aside from being a lubricant, it also gives the body 

heat and vitality. The most important byproduct of milk processing is butter-oil. Butter oil is produced by 

following a specific procedure that begins with milk as the basic ingredient. Quite a few facilities in India 

produce butter-oil. There are typically eight interconnected subsystems in a butter oil production facility. 

So, let's take a quick look at the several steps that go into making butter-oil. 

 

1. Reception and Processing of Milk 
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Various contractors and milk collecting centers deliver milk to the plant dock using milk tankers pulled by 

a fleet of rented trucks. Unloading and grading are the main components of this task. Measurement, 

analysis, and evaluation of milk samples. Raw milk is kept in silos after being cooled to 4°C in milk chillers 

from the dump tank, which improves its storage quality. Afterwards, the raw milk is cooled and then put 

through the milk plate pasteurizer, an independent device that heats and cools the milk. After being 

heated to between 4 and 45 degrees Celsius, the milk is redirected to a cream separator, which strains 

out the cream. The skimmed milk is then returned to the milk pasteurizer, where it is heated to 80 degrees 

Celsius to ensure it is safe for human consumption. Finally, it is cooled to 4 degrees Celsius to further 

improve its storage quality. 

 

2. Removing Fat from Milk 

The milk that has been pasteurized at a temperature of 45 degrees Celsius is sent to the cream separator, 

where the fat is extracted from the milk in the form of cream that contains between 40 and 50 percent 

fat. The skimmed milk that is produced is then sent back to the milk pasteurizer. 

 

3. The Process of Cold-Pressured Cream 

To pasteurize cream, one must heat each individual particle to a temperature of at least 71°C. To prepare 

the pasteurized cream for subsequent processing into butter and butter-oil, it is held in a double-jacketed 

tank. To make churning feasible, cream is cooled and aged by reducing its temperature and kept for a few 

hours. 

 

4. Production of Butter 

The cream is transferred from the storage tank to the butter churner. The cream is processed in the 

machine to produce butter granules. Buttermilk is extracted individually and pumped back into the raw 

milk silos, while butter granules are processed further in the machine to produce a homogeneous mass 

of butter. The butter is extracted from the machine and sent to melting vats by butter carts. 

 

5. Producing Butter-Oil 

After the butter has melted in the vats, it is transferred to the butter-oil boiler and gradually heated to 

107° C to remove any water vapor. After that, it is left undisturbed for a few hours to finish melting. After 

being pumped out of the boiler, the butter-oil is sent to settling tanks to settle for a few hours. This process 

removes the tiny particles of residue from the butter-oil. Once clarified, the butter-oil is transferred to a 

storage tank and chilled to a temperature (between 28 and 30 degrees Celsius) that is ideal for filling. 

 

6. Butter-oil Containers 

The butter oil that is stored in the tank is tested by the team in charge of quality control for a variety of 

tests, and then it is packed into tins of varying sizes after the analysis. 

An illustration of the flow chart that depicts the process of producing butter-oil may be seen in Figure 1. 
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NOTATIONS AND THE SYSTEM 

According to the information presented in this chapter, the production plant for butter oil is comprised of 

the following eight sub-systems. 

 

1. Sub-system 1 (Pumping): 

The most important component of the plant is the one that is responsible for unloading the milk that has 

been brought in from the numerous milk collection centers. A flawless switchover mechanism has been 

utilized in order to put two pumps in the plant, one of which is operational and the other of which is in 

standby mode. As a result, we have thought that this component of the system is completely reliable. 

 

2. Sub-system 2 (Chiller):  

A vital component of the plant, this is as well. We assume that the plant's backup chiller, which is always 

on standby, likewise never fails. 

 

3. Sub-system S1 (Separator):  

Centrifugal force is the underlying mechanism that makes this plant component function. The milk is 

cooled in the chiller and then sent to the cream separator, where it becomes cream with 40-50% fat. The 

skimmed milk is then kept in milk silos to be made into milk powder. The motor, bearings, and high-speed 

gearbox are the three main parts that work together in sequence. 

 

4. Sub-system S2 (Pasteurizer):  

This sub-system ensures that the cream from the separator is pasteurized. Pasteurization is the process 

of heating the cream to a temperature of at least 71°C for each individual particle. There is no holding 

period when it is heated to 80–82°C in practice. Its goals include the elimination of harmful 

microorganisms, the neutralization of unwanted taste compounds, the inactivation of enzymes, and the 

elimination of undesired pathogens. The tanning ingredients in the cream may also be extracted using this 

subsystem. For subsequent processing, the pasteurized cream is held in a double-jacketed cream storage 

tank. It has a motor and bearings connected in series and may function in a reduced condition. 

 

5. Sub-system S3 (Continuous Butter Making):  
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The CBM receives its cream supply from the cream storage tank and pumps it out. This equipment is used 

to get butter granules by churning the cream. The procedure ends with a homogenous mass of butter, 

which is achieved by further processing the butter granules in the machine after they have been pumped 

hack to raw milk silos. After the butter has been homogenized, it is transferred to the melting vats using 

butter carts. A gearbox, motor, and set of bearings form the CBM. 

 

6. Sub-system S4 (Melting Vats): 

A storage tank with two jackets makes up this subsystem. Here, the butter is gradually heated to a 

temperature of around 107°C, allowing the water to evaporate. After that, the melted butter has to sit 

undisturbed for around 30 minutes. The components of this subsystem include motors, bearings, and 

monoblock pumps connected in series. 

 

7. Sub-system S5 (Butter-oil Clarifier): 

After the butter-oil has melted in the vats, it is transferred to the settling tanks and left to settle for a few 

hours. The next step is to filter out any remaining little bits of butter-oil residue, and finally, the butter-oil 

is transferred to storage tanks. We may now store the butter-oil at a temperature between 28 and 30 

degrees Celsius. In this subsystem, the motor and gearbox are connected in series. 

 

8. Sub-system S6 (Packaging):  

This part of the system uses a pouch-filling machine to make the processed butter-oil packets. The 

machine knows how to fill, flow, and seal automatically. The pneumatic cylinder and printed circuit board 

are connected in series in this subsystem. 

To keep things simple, we'll just look at the first two subsystems out of the total six. 

 

Added Notes: 

Alongside the designations for sub-systems, namely S1, S2, S3, S4, and S5, we have employed the 

subsequent notations. 

1.𝑆2
̅̅̅ Shows that sub-system S2 is operating in a diminished condition. 

2. 𝜆1, λ2, λ3, λ4, λ5, λ6, and λ2 stands for the subsystems' respective constant failure rates 

 S1, S3, S4, S5, S6, 𝑆2
̅̅̅  and S2 

3.μ1, μ2, μ3, μ4, μ5 , and μ6 indicate, respectively, the rates of repair that are constant for the subordinate 

system S1,S3, S4, S5, S6, and S2 

4. f1(t), f2(t), … , f13(t) determined the probability that were associated with the systems at the moment t. 

5.X1,X2, X3, X4, X5, and X6  represent the failed state of the sub-systems S1,S2, S3,S4, S5, and S6, 

respectively. 

Presumptions: 

1. The rates of failure and repair are not dependent on one another, and the unit of measurement for 

both is per day. 
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II. It is not possible for any of the subsystems to experience failure at the same time. 

III.Only through reduced state does the sub-system S2 have a failure. 

IV. In the same way that the new components work, the repaired ones do as well. 

V. Standby systems' switchover devices are faultless. 

 

Mathematical Representation of the System: 

Short-term state: 

Based on probability, the following set of first-order differential equations and the system's transition 

map are linked. 
𝑑𝑓1(𝑡)

𝑑𝑡
 +(λ1+λ2+λ3+λ4+λ5+λ6) f1(t) = μ1 f3 (t)+μ2 f4 (t)+μ3 f5 (t)+μ4 f6 (t)+μ5 f7(t)+ μ6 f13(t) … (1) 

𝑑𝑓2(𝑡)

𝑑𝑡
 +(λ1+λ2+λ3+λ4+λ5+λ7) f2(t) = μ1 f8 (t)+μ2 f9 (t)+μ3 f10 (t)+μ4 f11 (t)+μ5 f12(t)+ λ6 f1(t) … (2) 

𝑑𝑓3(𝑡)

𝑑𝑡
 +μ1 f3(t)= λ1 f1(t) … (3) 
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𝑑𝑓4(𝑡)

𝑑𝑡
 +μ2 f4(t)= λ3 f1(t) … (4) 

𝑑𝑓5(𝑡)

𝑑𝑡
 +μ3 f5(t)= λ3 f1(t) … (5) 

𝑑𝑓6(𝑡)

𝑑𝑡
 +μ4 f6(t)= λ4 f1(t) … (6) 

𝑑𝑓7(𝑡)

𝑑𝑡
 +μ5 f7(t)= λ5 f1(t) … (7) 

𝑑𝑓8(𝑡)

𝑑𝑡
 +μ1 f8(t)= λ1 f2(t) … (8) 

𝑑𝑓9(𝑡)

𝑑𝑡
 +μ2 f9(t)= λ2 f2(t) … (9) 

𝑑𝑓10(𝑡)

𝑑𝑡
 +μ3 f10(t)= λ3 f2(t) … (10) 

𝑑𝑓11(𝑡)

𝑑𝑡
 +μ4 f11(t)= λ4 f2(t) … (11) 

𝑑𝑓12(𝑡)

𝑑𝑡
 +μ5 f12(t)= λ5 f2(t) … (12) 

𝑑𝑓13(𝑡)

𝑑𝑡
 +μ6 f13(t)= λ7 f2(t) … (13) 

With the boundary condition 

fm(0) = 1 if m= 1 

fm(0) = 0 if m≠1 

Equation (14) includes boundary conditions that have been solved using the Rk4 technique for the system 

of differential equations (1) to (13) with those conditions. For various subsystem failure rates and repair 

options, numerical companions have been run from time t=0 to t=360 days. 

The system's dependability R(t) may be calculated by 

R(t)= f1(t)+f2(t) … (15) 

Permanent Condition: 

Management is often concerned with the system's availability over the long term in sectors that include 

the processing of goods. It is necessary for us to have the probabilities of the system in its steady state in 

order to determine its availability over the long run. Obtaining the probability of the systems in their 

steady state may be accomplished by setting the following restrictions: 
𝑑

𝑑𝑡
 →0 as (t) → ∞ . 

In this situation, equations (1) through (13) may be reduced to the equations that are presented below. 

Again, we made use of the symbols f1, f2, f3,…, f13 as t→∞. 

Then 
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(λ1+λ2+λ3+λ4+λ5+λ6) f1= μ1 f3 +μ2 f4+μ3 f5+μ4 f6 +μ5 f7+ μ6 f13 … (16) 

(λ1+λ2+λ3+λ4+λ5+λ7) f2= μ1 f8+μ2 f9+μ3 f10+μ4 f11 +μ5 f12+ λ6 f1 … (17) 

μ1f3 = λ1f1 … (18) 

μ2f4 = λ2f1 … (19) 

μ3f5 = λ3f1 … (20) 

μ4f6 = λ4f1 … (21) 

μ5f7 = λ5f1 … (22) 

μ1f8 = λ1f2 … (23) 

μ2f9 = λ2f2 … (24) 

μ3f10 = λ3f2 … (25) 

μ4f11 = λ4f2 … (26) 

μ4f12 = λ5f2 … (27) 

μ4f13 = λ7f2 … (28) 

By recursively solving these equations, we obtain 

 

f2= Gf1, where G=
𝜆6

𝜆7
 … (29) 

f3= 
𝜆1

𝜇1
f1 … (30) 

f4= 
𝜆2

𝜇2
f1 … (31) 

f5= 
𝜆3

𝜇3
f1 … (32) 

f6= 
𝜆4

𝜇4
f1 … (33) 

f7= 
𝜆5

𝜇5
f1 … (34) 

f8= 
𝜆1

𝜇1
Gf1 … (35) 

f9= 
𝜆2

𝜇2
Gf1 … (36) 
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f10= 
𝜆3

𝜇3
Gf1 … (37) 

f11= 
𝜆4

𝜇4
Gf1 … (38) 

f12= 
𝜆5

𝜇5
Gf1 … (39) 

f13= 
𝜆6

𝜇6
Gf1 … (40) 

Presently, by use of the standardizing condition 

f1+f2+f3+f4+ … + f13+= 1 … (41), 

We get 

f1= [(1+
𝜆1

𝜇1
+  

𝜆2

𝜇2
+  

𝜆3

𝜇3
+  

𝜆4

𝜇4
+

𝜆5

𝜇5
)(1+G)+ 

𝜆6

𝜇6
] … (42) 

The long run availability of the system A (∞) can now be calculated by formula, 

A (∞)  = f1+ f2 

          = (1+G)f1 … (43) 

A Study of Behavior 

 

A STATE OF TRANSIENCE 

 

The system's dependability, as delineated in equation (15), has been calculated for many combinations of 

repair and failure rates. It should be noted that these combinations are not comprehensive, since we have 

only examined the primary sub-systems in the numerical analysis. The system's dependability, determined 

by various combinations of failure and repair rates, is illustrated in Tables 1 through 6. The final row of 

the data presents the mean time before failure (MTBF) in days corresponding to the respective failure 

rates. The Mean Time between Failures (MTBF) has been calculated utilizing Simpson's one-third rule. 

 

1. Impact of separator failure rate on system dependability: 

The impact of the sub-system's failure rate on the overall system dependability is evaluated by adjusting 

its value to λ1 = 0.006, 0.007, 0.008, 0.009, and 0.010. The failure and repair rates of further sub-systems 

are as follows: λ2 = 0.0005, λ3 = 0.00727, μ1 = 0.41, μ2 = 0.40, μ3 = 0.67, μ4 = 0.33, μ5 = 0.67, and μ6 = 6.00. 

The system's dependability is determined using these data, resulting in the system's reliability assessment. 

The values of α₁ have been examined during the span of days. The system's dependability diminishes by 

around 0.036% over time. Nonetheless, it diminishes by around 0.93% when the failure rate of the 

separator escalates from 0.0006 to 0.010, while MTBF declines by approximately 0.90%. 

Table 1 
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Effect of Failure Rate of Separator on Reliability of the System  

 

 

2. Impact of the failure rate of Condition-Based Maintenance on system dependability: 

As part of the investigation into the impact of the failure rate of sub-system C on the overall dependability 

of the system, the values of λ2 are varied as follows: 0.005, 0.0052, 0.0054, 0.0056, and 0.0058. The 

calculated failure and repair rates for additional sub-systems are as follows: λ1 equals 0.008, λ3 equals 

0.0027, λ4 equals 0.0009, and λ5 equals 0.0027, λ6 equals 0.0055, and λ7 equals 0.011. The values of μ1 is 

0.41, μ2 is 0.4, μ3 is 0.67, μ4 is 0.33, μ5 is 0.67, and μ6 is 6.00. Table 5.1(b) displays the results of the 

calculation that was performed using these data to determine the system's level of dependability. This 

table illustrates how the failure rate of CBM affects the system's dependability for the purpose of 

discussion. Taking into account the number of days, the values of 𝜆2 have been taken into consideration. 

With an increase in time from 30 to 360 days, the system's reliability reduces by 0.036%. However, the 

system's reliability decreases by roughly 0.19% with an increase in the failure rate of CBM from 0.0052 to 

0.0058, and the mean time between failures (MTBF) similarly decreases by approximately 0.19%. 

Impact of CBM Failure Rate on System Reliability 

 

Table 2 

λ1→ 

Days ↓ 

0.006 0.007 0.008 0.009 0.010 

30 0.962089 0.959837 0.957596 0.955365 0.953144 

60 0.961955 0.959704 0.957464 0.955233 0.953013 

90 0.961872 0.959622 0.957381 0.955152 0.952932 

120 0.961821 0.959571 0.957331 0.955101 0.952881 

150 0.961790 0.959539 0.957299 0.955069 0.952850 

180 0.961770 0.959519 0.957279 0.955049 0.952830 

210 0.961758 0.959507 0.957267             0.955038 0.952818 

240 0.961750 0.959500 0.957260             0.955030 0.952811 

270 0.961745 0.959495 0.957255             0.955025 0.952806 

300 0.961742 0.959492 0.957252            0.955022 0.952803 

330 0.961741 0.959490 0.97250            0.955020 0.952801 

360 0.961741 0.959489 0.957249           0.955019 0.952800 

MTBF 346.638 345.849 345.066          344.386 343.509 

λ2 → 0.0050 0.0052 0.0054 0.0056 0.0058 
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(iii) Dependability of the system as a function of melting vat failure rate 

By changing its values to λ3 = 0.0022, 0.0024, 0.0026, 0.0028, and 0.0030, the impact of sub-system D's 

failure rate on the system's dependability is investigated. The following values were used to calculate the 

failure and repair rates of the remaining subsystems: λ1 = 0.008, λ2 = 0.0055, λ4 = 0.0009, λ5 = 0.0027, λ6 = 

0.0055, λ7 = 0.0111, μ1 = 0.41, μ2 = 0.40, μ3 = 0.67, μ4 = 0.33, μ5 = 0.67, and 𝜇6 = 6.00. Table 3 displays the 

results of the reliability calculation performed on this data. The table below illustrates how the system's 

dependability is affected by the melting vat failure rate. We have taken the number of days into account 

while considering the λ3 values. The table shows that the system's dependability drops by 0.0285% in the 

first quarter and stays the same in the remaining three months. As the melting vat failure rate increases 

from 0.0022 to 0.0030, the reliability and MTBF both fall by around 0.11%. 

 

Table 3 

 Impact of Melting Vat Failure Rate on System Reliability 

λ3 → 

DAYS ↓ 

0.0022 0.0024 0.0026 0.0028 0.0030 

30 0.958280 0.958006 0.957732 0.957459 0.957185 

60 0.958148 0.957874 0.957600 0.957327 0.957053 

90 0.958066 0.957792 0.957518 0.957245 0.956971 

120 0.958015 0.957741 0.957467 0.957194 0.956920 

DAYS↓ 

30 0.958743 0.958284 0.957825 0.956366 0.956908 

60 0.958610 0.958151 0.957692 0.957234 0.956777 

90 0.958528 0.958069 0.957611 0.957152 0.956695 

120 0.958477 0.958018 0.957560 0.957102 0.956643 

150 0.958446 0.957986 0.957528 0.957070 0.956612 

180 0.958426 0.957967 0.957508 0.957050 0.956592 

210 0.958414 0.957955 0.957496 0.957038 0.956580 

240 0.958406 0.957947 0.957489 0.957031 0.956573 

270 0.958401 0.957943 0.957484 0.957026 0.956568 

300 0.958399 0.957940 0.957481 0.957023 0.956565 

330 0.958397 0.957938 0.957479 0.957021 0.956563 

360 0.958396 0.957937 0.957478 0.957020 0.956562 

MTBF 345.468 345.306 345.147 344.985 344.826 
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15 0.957983 0.957707 0.957436 0.957162 0.956889 

180 0.957964 0.957690 0.957416 0.957142 0.956869 

210 0.957951 0.957678 0.957404 0.957131 0.956857 

240 0.957944 0.957670 0.957396 0.957123 0.956850 

270 0.957939 0.957665 0.957392 0.957118 0.956845 

300 0.957936 0.957663 0.957389 0.957115 0.956842 

330 0.957935 0.957661 0.957387 0.957113 0.956840 

360 0.957933 0.957660 0.957386 0.957112 0.956839 

MTBF 345.306 345.210 345.314 344.018 344.922 

 

(iv) Dependability of the system as a function of separator repair rate 

The impact of the sub-system separator's repair rate on system dependability is examined by adjusting its 

values to μ₁ = 0.30, 0.35, 0.40, 0.45, and 0.50. The failure and repair rates of the other subsystems are as 

follows: λ₁ = 0.008, λ₂ = 0.0055, λ₃ = 0.0027, λ₄ = 0.0009, λ₅ = 0.0027, λ₆ = 0.0055, λ₇ = 0.0111, μ₂ = 0.40, μ₃ 

= 0.67, μ₄ = 0.33, μ₅ = 0.67, and μ₆ = 6.00. The system's dependability is determined using this data, with 

findings presented in Table 4. The table indicates that the system's dependability improves by 0.36% when 

the separator's repair rate (μ1) is elevated from 0.3 to 0.35, with only minimal gains for μ1 over 0.35. 

Moreover, dependability diminishes by around 0.036% as the duration extends from 30 to 360 days. MTBF 

rises by around 1.0% as the repair rate escalates from 0.30 to 0.50. 

 

Table 4 

System Reliability and the Separator Repair Rate 

μ1 → 

DAYS ↓ 

 

0.30 

 

0.35 

 

0.40 

 

0.45 

 

0.50 

30 0.951082 0.954538 0.957149 0.959188 0.960827 

60 0.950950 0.954407 0.957017 0.959056 0.960694 

90 0.950870 0.954326 0.956935 0.958937 0.960611 

120 0.950819 0.954275 0.956884 0.958922 0.960560 

150 0.950788 0.954244 0.956852 0.958891 0.960528 

180 0.950768 0.954224 0.956833 0.958871 0.960509 

210 0.950756 0.954212 0.956820 0.958860 0.960496 

240 0.950748 0.954204 0.956813 0.958852 0.960489 

270 0.950744 0.954199 0.956808 0.958847 0.960484 

300 0.950741 0.954197 0.956805 0.958844 0.960481 
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330 0.950739 0.954195 0.956803 0.958842 0.960479 

360 0.950738 0.954194 0.956802 0.958841 0.960478 

MTBF 342.787 343.997 344.909 345.622 346.220 

 

(v) A system's dependability as a function of the CBM repair rate 

By changing its values to μ2   = 0.30, 0.35, 0.40, 0.45, and 0.50, the study examines the impact of the sub-

system CBM repair rate on the system's dependability. The following values have been used for the failure 

and repair rates of various sub-systems: λ1 = 0.008, λ2 = 0.0055, λ3 = 0.0027, λ4 = 0.0009, λ5= 0.0027, λ6 = 

0.0055, λ7 = 0.0111, μ1 = 0.41, μ3 = 0.67, μ4 = 0.33, μ5 = 0.67, and μ6 = 6.00. Table 5 displays the results of 

calculating the system's dependability using this data. The table shows that as the repair rate of CBM goes 

from 0.30 to 0.50, the system's dependability goes up about 0.66 percentage points. Concurrently, there 

is a 0.036 percentage point drop in dependability for every day that goes from 30 to 360. From a repair 

rate of 0.30 to 0.50, there is an increase of around 0.64% in MTBF. 

Table 5 

The Impact of CBM Repair Rate on System Reliability 

μ2 → 

DAYS ↓ 

0.30 0.35 0.40 0.45 0.50 

30 0.953413 0.955798 0.957596 0.958998 0.959711 

60 0.953281 0.955666 0.957464 0.958866 0.959578 

90 0.953200 0.95585 0.957382 0.958784 0.959496 

120 0.953149 0.955534 0.957331 0.958733 0.959445 

150 0.953118 0.955503 0.957299 0.958701 0.959441 

180 0.953098 0.955483 0.957279 0.958681 0.959393 

210 0.953086 0.955471 0.957267 0.958669 0.959381 

240 .953078 0.955463 0.957260 0.958661 0.959374 

270 0.953074 0.955458 0.957255 0.958657 0.959369 

300 0.953071 0.955456 0.957252 0.958654 0.959366 

330 0.953069 0.955454 0.957250 0.958652 0.959364 

360 0.953068 0.955453 0.957249 0.958651 0.959363 

MTBF 343.603 344.437 345.066 345.556 345.807 

 

(vi) Impact on system dependability of melting vat repair rate 

As part of the investigation of the impact of the repair rate of sub-system melting vats on the 

dependability of the system, the following values of μ3 are considered: 0.60, 0.65, 0.70, 0.75, and 0.80. It 

has been determined that the failure and repair rates of additional sub-systems are as follows: λ1 = 0.008, 

λ2 = 0.0055, λ3 = 0.0027, λ4= 0.0009, λ5 = 0.0027, λ6= 0.0055, λ7 = 0.0111, μ2 = 0.41, μ3 = 0.40, μ4 = 0.33, μ5 

= 0.67, and μ6 = 6.00. The results of the calculation that determines the system's dependability are 

presented in Table 6, which may be found using these data. According to the data shown in this table, it 
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is evident that the reliability and mean time between failures (MTBF) of the system experience a rise of 

roughly 0.1% when the repair rate of the separator (μ3) is increased from 0.60 to 0.80. The increase in 

time from thirty to three hundred and sixty days results in a drop in dependability of around 0.036 percent. 

Table 6 

Impact of Melting Vat Repair Rate on System Reliability 

μ3 → 

DAYS ↓ 

0.60 0.65 0.70 0.75 0.80 

30 0.957165 0.957482 0.957554 0.957990 0.958196 

60 0.957033 0.957350 0.957622 0.957858 0.958064 

90 0.956951 0.957268 0.957540 0.957776 0.957982 

120 0.956900 0.957217 0.957489 0.957725 0.957931 

150 0.956868 0.957185 0.957457 0.957693 0.957899 

180 0.956849 0.957166 0.957438 0.957673 0.957879 

210 0.966837 0.957154 0.957426 0.957661 0.957867 

240 0.956829 0.957146 0.957418 0.957654 0.957860 

270 0.956824 0.957141 0.957413 0.957649 0.957855 

300 0.956821 0.957138 0.957410 0.957646 0.957852 

330 0.956820 0.957137 0.957408 0.957644 0.957850 

360 0.956819 0.957135 0.957407 0.957643 0.957849 

MTBF 344.915 345.026 345.114 345.204 345.276 

 

PRESENT STATUS 

The effect of change in failure and repair rates of some important sub-systems on the long run availability 

of the system is studied in this section. 

(i) The long-term availability impacted by separator and CBM failure rates 

In order to investigate the impact of failure rates on the long-term availability of the system, the values 

of the sub-systems S1 and S3 are varied. The values of λ1 are as follows: 0.006, 0.007, 0.008, 0.009, and 

0.010. The values of λ2 are as follows: 0.0050, 0.0052, 0.0054, 0.0056, and 0.0058. The rates of failure and 

repair for other subsystems have been determined to be as follows: λ3 = 0.0027, λ4 = 0.0009, λ5 = 0.0027, 

λ6 = 0.0055, λ7 = 0.0111, μ1 = 0.41, μ2 = 0.40, μ3 = 0.67, μ4 = 0.33, μ5 = 0.67, and μ6 = 6.00. Utilizing this 

data, a calculation is performed to determine the system's availability over the long term, and the results 

are presented in Table 7. The data shown in this table demonstrates that an increase in the failure rate 

(λ1) of the separator would have a negative impact of roughly 0.93% on the long-term availability of the 

system. This is in contrast to the failure rate of the CBM (λ2), which would only have a negative impact of 

0.19% on the availability. 

Table 7 

The consequences of the failure rates of the separator and the CBM on the system's availability over 

the long run 

λ1→  0.006 0.007 0.008 0.009 0.010 
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λ2↓ 

0.0050 0.962963 0.960675 0.958429 0.956194 0.953969 

0.0052 0.962499 0.960189 0.957981 0.955729 0.953514 

0.0054 0.962036 0.959268 0.957522 0.955272 0.953060 

0.0056 0.961574 0.959268 0.957064 0.954816 0.952606 

0.0058 0.961112 0.958808 0.956606 0.954361 0.952153 

 

(ii) Impact of failure rates of separators and melting vats on long-term availability 

We have employed fixed failure and repair rates for all sub-systems, except the separator and melting 

vats, as follows: λ2 = 0.0055, λ4 = 0.0009, λ5 = 0.0027, λ6= 0.0055, λ7 = 0.0111, and μ1 = 0.41, μ2 = 0.4, μ3 = 

0.67, μ4 = 0.33, μ5= 0.67, and μ6 = 6.00. The failure rates for the separator and melting vats are as follows: 

λ1 = 0.006, 0.007, 0.008, 0.009, 0.01 and λ3 = 0.0024, 0.0026, 0.0028, 0.0030. The long-term availability of 

the system is estimated and displayed in Table 8. This table indicates that an increase in the failure rate 

of separators (λ1) impacts the long-term availability of the system by roughly 0.93%, while an increase in 

the failure rate of melting vats (λ3) affects it by around 0.12%. 

Table 8 

Impact of Separator and Melting Vat Failure Rates on System Long-Term Availability 

λ1→  

λ3↓ 

0.006 0.007 0.008 0.009 .010 

0.0022 0.962527 0.960216 0.958009 0.955767 0.953542 

0.0024 0.962249 0.959940 0.957733 0.955491 0.953269 

0.0026 0.961971 0.959633 0.957458 0.955218 0.952996 

0.0028 0.961694 0.959387 0.957183 0.954944 0.952724 

0.0030 0.961417 0.958111 0.956909 0.954670 0.952452 

(iii) Impact of separator failure and repair rates on long-term availability 

We have also computed the system's long-term availability after adjusting for separator failure and 

repairs. The outcomes of using the following data are displayed in Table 9. The following five levels of 

separator failure and repair rates have been taken into consideration: λ1 = 1006 0.007, 0.008, 0.009, 0.010 

and μ1 = 0.3, 0.35, 0.40, 0.45, and 0.50. λ2 = 0.0055 μ3 = 0.0027 λ4 = 0.0009, λ5 = 0.0027 λ6 = 0.0055 λ7 = 

0.0111, and μ2 = 0.4 μ3 = 0.67 μ4 = 0.33 μ5 = 0.67, μ6= 6.0 are the rates for the other sub-systems. Table 9 

shows that a higher separator failure rate (λ1) reduces the system's long-term availability, whereas a 

higher repair rate enhances it. When the separator's failure rate rises from 0.006 to 0.010, availability falls 

by 1.2% to 0.7%, and when the separator's repair rate rises from 0.30 to 0.50, availability rises by 0.7% to 

1.2%. 

Table 9 

The Long-Term Availability of the System: The Impact of Separator Failure and Repair Rates 

λ1→  

μ1↓ 

0.006 0.007 0.008 0.009 0.010 

30 0.956881 0.953539 0.950816 0.947812 0.944827 
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35 0.959504 0.956881 0.954272 0.951677 0.949097 

40 0.961481 0.959176 0.956881 0.954598 0.952325 

45 0.963024 0.960969 0.958920 0.957432 0.954850 

50 0.964262 0.962407 0.960558 0.958716 0.956881 

 

iv) Impact of melting vats and CBM repair rates on long-term availability 

In this area, we have adjusted the CBM and melting vat repair rates as follows: μ 2= 0.3, 0.35, 0.40, 0.45, 

0.50 and μ3 = 0.6, 0.65, 0.70, 0.75, 0.80. The following values have been used for the failure and repair 

rates of the sub-systems: λ1= 0.008, λ2 = 0.005, λ3= 0.0027, λ4   = 0.0009, λ5= 0.0027, λ6= 0.0057 λ7, = 

0.0111, μ1= 0.4, μ4= 0.33, μ5= 0.67, and μ6   = 6.00. Table 10 displays the results of the calculation of the 

system's long-term availability using these parameters. The long-term system availability is enhanced by 

both increasing the repair rate of CBM (μ2) and the repair rate of melting vats, as shown in the table. 

However, while both rates have an impact on long-term system availability, the former has a greater 

impact of about 0.7% and the latter of only 0.1%. 

Table 10 

In the long run, the availability of the system is affected by the repair rates of both the CBM and the 

melting vats 

μ2→ 

μ3↓ 

0.30 0.35 0.40 0.45 0.50 

0.60 0.952715 0.955081 0.956817 0.958284 0.959387 

0.65 0.953032 0.953032 0.957138 0.958605 0.959709 

0.70 0.953351 0.955720 0.957458 0.988927 0.960032 

0.75 0.953533 0.955902 0.955902 0.959111 0.960216 

0.80 0.953714 0.956085 0.956085 0.959295 0.960400 

Conclusion: 

The separator, which is part of sub-system S1, has the greatest impact on the overall system's 

dependability and long-term availability, according to an analysis of Tables 1 to 6 and 7–10. Graphs 1 and 

2 further show how the repair and failure rates of sub-system S1 affect the system's dependability. There 

are other subsystems that work almost as well [37-41]. Consequently, the butter-oil production plant's 

management should pay close attention to this sub-system if they want it to operate better overall. 
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