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Abstract:

This research offers a numerical evaluation of the dependability and availability of a serial butter-oil
production line from a mechanical engineering standpoint. The line consists of essential rotating and fluid-
handling subsystems—raw-milk receiving pumps, cream separators, heat exchangers, mechanical
agitators, homogenizers, gearboxes, and conveying components—whose mechanical integrity
significantly influences throughput and quality. We describe the production train with continuous-time
Markov chains (CTMCs) derived from a reliability block diagram (RBD) illustrating series dependencies and
maintenance strategies. Component-level failure (A) and repair (u) rates, obtained from realistic duty
cycles and mechanical failure modes (bearing wear, seal leakage, misalignment, lubrication starvation,
cavitation, fouling, and thermo mechanical fatigue), are transmitted to system-level metrics through
state-transition analysis. Numerical simulations provide mean time between failures (MTBF), mean time
to repair (MTTR), and steady-state availability for the whole system and for mechanically critical
subsystems (e.g., pump-valve trains and homogenization units). Sensitivity studies pinpoint availability
constraints and prioritize mechanical parameters—bearing L10 life, seal MTBF, lubricant change interval,
alignment tolerance, and cooling-water AT—based on their effect on throughput reduction. The findings
indicate that modest enhancements in repair logistics for high-criticality assets (such as the installation of
cartridge seals and quick-release couplings on feed pumps) may surpass significant MTBF reductions in
low-criticality components. We further illustrate that the integration of mechanical condition monitoring
(vibration and temperature trending) with SPC-based run charts and control limits stabilizes critical
mechanical variables (overall vibration, RMS acceleration, and discharge pressure ripple), thereby
diminishing special-cause variation and unplanned downtime. The study concludes with maintenance
strategies designed for mechanical assets, including spares pooling for common failure categories,
precision alignment, optimized lubrication practices, and threshold-based condition-directed overhauls,
resulting in quantifiable improvements in line availability and energy efficiency while maintaining butter-
oil quality standards.

Keywords: Reliability, Availability, Butter-oil Processing, Serial Process, Markov Analysis, Mean Time
Between Failures (MTBF), Mean Time to Repair (MTTR)

Introduction:
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Despite the greatest efforts of academics and stakeholders, no system can be completely dependable.
Therefore, two additional factors known as availability and maintainability have come into prominence
due to the growing complexity of modern technology. In order to ensure ongoing and extended
availability, maintenance is an essential preventative and corrective intervention. Maintainability is the
likelihood that the system will function normally again within the allotted time frame following the
completion of repairs in accordance with the stipulated condition. The idea of maintainability is linked to
availability. The likelihood that the system will function within a specific time frame is referred to as
availability. It refers to the percentage of time that the system is usable, excluding downtime (while
undergoing maintenance).

If management wants their complex systems to be as reliable as possible, meeting worldwide standards
and generating the predicted profit, they must detail the availability and cost of each component's
reliability. More recently, a number of scholars have proposed availability allocation models as a means
to minimize the system's total costs. The system's set availability, which is already attained after
optimization according to another method, acts as a limitation. There are two main types of availability
models: (a) those that aim to provide an accurate model of system availability, and (b) those that, in
response to system needs, assign availability to specific components. The primary goal of this article is to
save costs while achieving the minimal performance requirements of each component. This may be
achieved by making sure that each component is designed to avoid failure or by allocating redundancy
appropriately. Problems with reliability optimization have been the focus of a number of academic
investigations. The impact of common cause shock failures and individual failures on the availability of a
repairable system was highlighted by Verma and Chari [1], who also established related equations. When
expanding distribution networks, Ramirez and Bernal [2] utilized Evolutionary Algorithm to optimize costs
and ensure dependability. Using a Markov model and an exponential distribution, Upreti [3] suggested a
stochastic study of a heating boiler system that is susceptible to preventative maintenance and repair.

In their research, Garg and Sharma [4] investigated the dependability, availability, and maintainability of
the synthesis unit in the fertilizer plant. They also conducted an analysis of these factors. With the help of
GWO, a variety of multi-objective and single-objective problems, both limited and unconstrained, have
been effectively addressed, resulting in competitive outcomes. Using the GWO approach, Fouad et al. [5]
discovered an extra number of nodal locations that were next to one another. The multi-layer perception
neural networks were trained with GWO by Mosavi et al. [6], who used three different data sets to train
them. These data sets included iris, lenses, and sonar. Gupta and Saxena [7] utilized GWO in order to
discover the parameters that were necessary for the effective autonomous power dispatch in two
locations that were linked. On the other hand, Jaya Bharati and colleagues [8] utilized crossover and
mutation when working with GWO to answer the challenge of cheap power transmission. For the purpose
of minimizing the fuel cost and avoiding the hazard zones in the (unmanned) ACV dilemma, Zhang et al.
[9] utilized the GWO approach. Using binary and mutant GWO techniques, Manikandan et al. [10]
performed gene selection on the micro array data with the intention of selecting genes. The non-convex
economic load dispatch problem was addressed by Kamboj et al. [11], who presented the GWO algorithm.
Mirjalili et al. [12] came up with the idea of Multi-Objective GWO, which involves incorporating an archive
that defines the global optimum solution into the first GWO in order to ret ravel the Pareto Optimal
solution. GA and fuzzy logic were presented by Kumar A [13] as a means of improving the dependability
of industrial systems. Because of its very efficient findings, Kumar et al. [14] utilized GWO for the purpose
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of optimizing the dependability of complex systems. Specifically, they were able to optimize the cost and
reliability of the life support system in a space capsule as well as a complicated bridge system. Additionally,
Kumar et al. [15] suggested the use of GWO for the purpose of comparing and analyzing the availability
and cost of engineering systems that are distributed in a series arrangement. In their subsequent work,
Kumar et al. [16] advocated the utilization of GWO for the safety system of a nuclear power plant in order
to maximize the cost-effectiveness of the residual heat removal system while maintaining its
dependability. Negi et al. [17] provided an overview of the numerous forms and hybrids of GWO, as well
as applications of various GWO applications. In their study, Uniyal et al. [18] provided a comprehensive
review of the dependability applications of a few Nature-inspired optimization strategies. In order to
tackle challenges involving the optimization of the dependability of complex systems, many types of GWO
have been presented, and the results have been extremely competitive. WSNs are one example of this.
The Modified Discrete GWO (MDGWO) algorithm was suggested by Li et al. [19] for the purpose of multi-
level picture thresholding. This algorithm involves the use of the optimized function Kapur's entropy in
conjunction with the discrete character of the threshold values. In their paper [20-22], Mirjalili and
colleagues developed Multi-objective GWO (MOGWO), which is a method for tackling global engineering
issues that makes use of Pareto-optimal solutions. The Chaotic GWO [23] and the Refraction Learning
GWO [24] are two other examples of the diverse types. According to the there is no such thing as a free
lunch theorem [25], there is no one meta-heuristic that can handle all of the difficult optimization issues.
The technique of solution for a nonlinear system of equations that makes use of met heuristics was
proposed by Pant et al. [26]. Additionally, Pant et al. [27] suggested a more sophisticated method of using
the Particle Swarm optimization technique to the optimization of dependability. In addition to this, they
[28] have suggested doing a review of the current state of the art on the development of the algorithm
for flower pollination. The multi-objective particle swarm optimization (MOPSO) approach was also
utilized by Pant et al. [29] in order to solve the reliability optimization challenge. Pant et al. [30] adapted
PSO for nonlinear optimization. The decomposition approach was originally introduced by Li and Haimes
[31] with the purpose of improving the dependability of big complex systems. Developed by Kennedy and
Eberhart [32], PSO has been utilized to address a wide variety of engineering issues that are encountered
in the real world, resulting in highly competitive outcomes. With further study, Coelho [33] addressed
reliability-redundancy optimization utilizing an effective PSO technique for mixed integer programming.
Using CSA, Kumar et al. [34] were able to overcome the difficulties of reliability optimization that were
associated with complex systems. Baskan [35] suggested using CSA with L'evy Flights to optimize road
network connection capacity additions. The CSA was proposed by Buaklee and Hongesombut [36] to
optimize DG allocation in a smart distribution grid.

The ingredient commonly used in Nepalese cuisine, "butter-oil" is actually just melted butter that has
been refined. It is one of the most essential components of traditional Nepalese cuisine, and eating it
regularly helps maintain a healthy and fit physique. Aside from being a lubricant, it also gives the body
heat and vitality. The most important byproduct of milk processing is butter-oil. Butter oil is produced by
following a specific procedure that begins with milk as the basic ingredient. Quite a few facilities in India
produce butter-oil. There are typically eight interconnected subsystems in a butter oil production facility.
So, let's take a quick look at the several steps that go into making butter-oil.

1. Reception and Processing of Milk
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Various contractors and milk collecting centers deliver milk to the plant dock using milk tankers pulled by
a fleet of rented trucks. Unloading and grading are the main components of this task. Measurement,
analysis, and evaluation of milk samples. Raw milk is kept in silos after being cooled to 4°C in milk chillers
from the dump tank, which improves its storage quality. Afterwards, the raw milk is cooled and then put
through the milk plate pasteurizer, an independent device that heats and cools the milk. After being
heated to between 4 and 45 degrees Celsius, the milk is redirected to a cream separator, which strains
out the cream. The skimmed milk is then returned to the milk pasteurizer, where it is heated to 80 degrees
Celsius to ensure it is safe for human consumption. Finally, it is cooled to 4 degrees Celsius to further
improve its storage quality.

2. Removing Fat from Milk

The milk that has been pasteurized at a temperature of 45 degrees Celsius is sent to the cream separator,
where the fat is extracted from the milk in the form of cream that contains between 40 and 50 percent
fat. The skimmed milk that is produced is then sent back to the milk pasteurizer.

3. The Process of Cold-Pressured Cream

To pasteurize cream, one must heat each individual particle to a temperature of at least 71°C. To prepare
the pasteurized cream for subsequent processing into butter and butter-oil, it is held in a double-jacketed
tank. To make churning feasible, cream is cooled and aged by reducing its temperature and kept for a few
hours.

4. Production of Butter

The cream is transferred from the storage tank to the butter churner. The cream is processed in the
machine to produce butter granules. Buttermilk is extracted individually and pumped back into the raw
milk silos, while butter granules are processed further in the machine to produce a homogeneous mass
of butter. The butter is extracted from the machine and sent to melting vats by butter carts.

5. Producing Butter-Oil

After the butter has melted in the vats, it is transferred to the butter-oil boiler and gradually heated to
107° C to remove any water vapor. After that, it is left undisturbed for a few hours to finish melting. After
being pumped out of the boiler, the butter-oil is sent to settling tanks to settle for a few hours. This process
removes the tiny particles of residue from the butter-oil. Once clarified, the butter-oil is transferred to a
storage tank and chilled to a temperature (between 28 and 30 degrees Celsius) that is ideal for filling.

6. Butter-oil Containers

The butter oil that is stored in the tank is tested by the team in charge of quality control for a variety of
tests, and then it is packed into tins of varying sizes after the analysis.

An illustration of the flow chart that depicts the process of producing butter-oil may be seen in Figure 1.
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Caption: figure 1: Flow diagram of butter-oil manufacturing plant

NOTATIONS AND THE SYSTEM

According to the information presented in this chapter, the production plant for butter oil is comprised of

the following eight sub-systems.

1. Sub-system 1 (Pumping):

The most important component of the plant is the one that is responsible for unloading the milk that has

been brought in from the numerous milk collection centers. A flawless switchover mechanism has been

utilized in order to put two pumps in the plant, one of which is operational and the other of which is in

standby mode. As a result, we have thought that this component of the system is completely reliable.

2. Sub-system 2 (Chiller):

A vital component of the plant, this is as well. We assume that the plant's backup chiller, which is always

on standby, likewise never fails.

3. Sub-system S; (Separator):

Centrifugal force is the underlying mechanism that makes this plant component function. The milk is

cooled in the chiller and then sent to the cream separator, where it becomes cream with 40-50% fat. The

skimmed milk is then kept in milk silos to be made into milk powder. The motor, bearings, and high-speed

gearbox are the three main parts that work together in sequence.

4. Sub-system S, (Pasteurizer):

This sub-system ensures that the cream from the separator is pasteurized. Pasteurization is the process

of heating the cream to a temperature of at least 71°C for each individual particle. There is no holding

period when it is heated to 80-82°C in practice. Its goals include the elimination of harmful

microorganisms, the neutralization of unwanted taste compounds, the inactivation of enzymes, and the

elimination of undesired pathogens. The tanning ingredients in the cream may also be extracted using this

subsystem. For subsequent processing, the pasteurized cream is held in a double-jacketed cream storage

tank. It has a motor and bearings connected in series and may function in a reduced condition.

5. Sub-system S; (Continuous Butter Making):
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The CBM receives its cream supply from the cream storage tank and pumps it out. This equipment is used
to get butter granules by churning the cream. The procedure ends with a homogenous mass of butter,
which is achieved by further processing the butter granules in the machine after they have been pumped
hack to raw milk silos. After the butter has been homogenized, it is transferred to the melting vats using
butter carts. A gearbox, motor, and set of bearings form the CBM.

6. Sub-system S, (Melting Vats):

A storage tank with two jackets makes up this subsystem. Here, the butter is gradually heated to a
temperature of around 107°C, allowing the water to evaporate. After that, the melted butter has to sit
undisturbed for around 30 minutes. The components of this subsystem include motors, bearings, and
monoblock pumps connected in series.

7. Sub-system Ss (Butter-oil Clarifier):

After the butter-oil has melted in the vats, it is transferred to the settling tanks and left to settle for a few
hours. The next step is to filter out any remaining little bits of butter-oil residue, and finally, the butter-oil
is transferred to storage tanks. We may now store the butter-oil at a temperature between 28 and 30
degrees Celsius. In this subsystem, the motor and gearbox are connected in series.

8. Sub-system S¢ (Packaging):

This part of the system uses a pouch-filling machine to make the processed butter-oil packets. The
machine knows how to fill, flow, and seal automatically. The pneumatic cylinder and printed circuit board
are connected in series in this subsystem.

To keep things simple, we'll just look at the first two subsystems out of the total six.

Added Notes:

Alongside the designations for sub-systems, namely Si, S;, Ss, Si, and Ss, we have employed the
subsequent notations.

1.5, Shows that sub-system S, is operating in a diminished condition.

2.1, A2, A3, A4, As, As, and A; stands for the subsystems' respective constant failure rates
S1, 53,54, Ss, S6, S and S,

3.u1, U2, M3, U4, Us, and e indicate, respectively, the rates of repair that are constant for the subordinate
system S3,Ss, S4, Ss, Se, and S»

4. f1(t), f2(t), ..., f13(t) determined the probability that were associated with the systems at the moment t.

5.X1,X2, X3, X4, Xs, and X represent the failed state of the sub-systems S1,S5, S3,S4, Ss, and Se,
respectively.

Presumptions:

1. The rates of failure and repair are not dependent on one another, and the unit of measurement for
both is per day.
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II. It is not possible for any of the subsystems to experience failure at the same time.
[11.Only through reduced state does the sub-system S, have a failure.

IV. In the same way that the new components work, the repaired ones do as well.

V. Standby systems' switchover devices are faultless.
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Caption: figure 2: Buftter oil production facility transition diagram

Mathematical Representation of the System:

Short-term state:
Based on probability, the following set of first-order differential equations and the system's transition
map are linked.

% +(Ar+A A+ +As+Ae) Fi(t) = pa f3 () +pa fa (1) +ps fs () +pa fe (1) +s F7(t)+ pe Fas(t) ... (1)
djzit) +(A1 A2+ A3+ A+ As+A7) T2(t) = W Fs (t)+2 Fo (1) 4+ Fio (T)+pla F1g (t)+s Fra(t)+ As Fa(t) ... (2)

L i fi(t)= Mfa(t) ... (3)
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% +H2 fa(t)= Asfat) ... (4)
%ﬁt) +3 fs(t)= Asfa(t) ... (5)
% +Ha fo(t)= Aafat) ... (6)
%ﬁt) +is F7(t)= As (t) ... (7)
% +u1 fa(t)= s Fat) ... (8)

B o to(t)= Aefalt) . (9)

% +uts Fro(t)= As Fa(t) ... (10)
%ﬁ” +a ()= Aafolt) ... (11)
% +Hs Fia(t)= As Falt) .. (12)
%i“) +ute Fra(t)= Ar Fao(t) ... (13)

With the boundary condition
fm(0)=1ifm=1
fm(0) =0 if m#1

Equation (14) includes boundary conditions that have been solved using the Rk4 technique for the system
of differential equations (1) to (13) with those conditions. For various subsystem failure rates and repair
options, numerical companions have been run from time t=0 to t=360 days.

The system's dependability R(t) may be calculated by

R(t)= fi(t)+f2(t) ... (15)

Permanent Condition:

Management is often concerned with the system's availability over the long term in sectors that include
the processing of goods. It is necessary for us to have the probabilities of the system in its steady state in
order to determine its availability over the long run. Obtaining the probability of the systems in their
steady state may be accomplished by setting the following restrictions:

d
E%Oas(t)%w.

In this situation, equations (1) through (13) may be reduced to the equations that are presented below.
Again, we made use of the symbols f; f5, fs,..., f13 as t>c0.
Then
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(Aa+A2+ Az +Aa+As+Ag) F1= W f3 +y fat s fo+ s fo +us f7+ Psfiz ... (16)
(A1+A2+ A3+ AL+ As A7) fo= g et o fot s frotpa f1a +s f1ot Asfr... (17)
pafs = Aafy ... (18)

Mafa = Aofy ... (19)

psfs = Asfy ... (20)

Mafs = Aafy ... (21)

psf7 = Asfy ... (22)

pafs = Aafs ... (23)

Moo = Aof; ... (24)

usfio = Asf ... (25)

Maf11 = Asf ... (26)

Waf12 = Asf ... (27)

Maf1z = Aoz ... (28)

By recursively solving these equations, we obtain

fo= Gf;, where G=% .. (29)
7

A
fi= 221 .. (30)

)

fim 221 (31)
)

fs= ﬂ3f1 .. (32)
M

fo= 521 .. (33)

_4s
fr= 221 . (34)
fa= 21Gf, ... (35)
H1

fo= 22Gf, ... (36)
H2
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f10= 22Gf, ... (37)
253

f11= ﬂGf1 ... (38)
22

f1o= 25Gf, ... (39)
Us

f15= 25Gf, .. (40)
He

Presently, by use of the standardizing condition
fifotfa+fat ..+ fi3+=1 ... (41),

We get

Az

fi= (1424 224 B
H1 [25]

+ 2 g Ly I5046) 29y L (42)
us Ha HUs He

The long run availability of the system A (o0) can now be calculated by formula,
A (00) = f1+ fz
= (1+G)f; ... (43)

A Study of Behavior

A STATE OF TRANSIENCE

The system's dependability, as delineated in equation (15), has been calculated for many combinations of
repair and failure rates. It should be noted that these combinations are not comprehensive, since we have
only examined the primary sub-systems in the numerical analysis. The system's dependability, determined
by various combinations of failure and repair rates, is illustrated in Tables 1 through 6. The final row of
the data presents the mean time before failure (MTBF) in days corresponding to the respective failure
rates. The Mean Time between Failures (MTBF) has been calculated utilizing Simpson's one-third rule.

1. Impact of separator failure rate on system dependability:

The impact of the sub-system's failure rate on the overall system dependability is evaluated by adjusting
its value to A; = 0.006, 0.007, 0.008, 0.009, and 0.010. The failure and repair rates of further sub-systems
are as follows: A, = 0.0005, A3 = 0.00727, 1 = 0.41, y, = 0.40, pu3 = 0.67, ua = 0.33, us = 0.67, and ps = 6.00.
The system's dependability is determined using these data, resulting in the system's reliability assessment.
The values of a; have been examined during the span of days. The system's dependability diminishes by
around 0.036% over time. Nonetheless, it diminishes by around 0.93% when the failure rate of the
separator escalates from 0.0006 to 0.010, while MTBF declines by approximately 0.90%.
Table 1
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Effect of Failure Rate of Separator on Reliability of the System

A 0.006 0.007 0.008 0.009 0.010

Days |
30 0.962089 0.959837 0.957596 0.955365 0.953144
60 0.961955 0.959704 0.957464 0.955233 0.953013
90 0.961872 0.959622 0.957381 0.955152 0.952932
120 0.961821 0.959571 0.957331 0.955101 0.952881
150 0.961790 0.959539 0.957299 0.955069 0.952850
180 0.961770 0.959519 0.957279 0.955049 0.952830
210 0.961758 0.959507 0.957267 0.955038 0.952818
240 0.961750 0.959500 0.957260 0.955030 0.952811
270 0.961745 0.959495 0.957255 0.955025 0.952806
300 0.961742 0.959492 0.957252 0.955022 0.952803
330 0.961741 0.959490 0.97250 0.955020 0.952801
360 0.961741 0.959489 0.957249 0.955019 0.952800
MTBF 346.638 345.849 345.066 344.386 343.509

2. Impact of the failure rate of Condition-Based Maintenance on system dependability:

As part of the investigation into the impact of the failure rate of sub-system C on the overall dependability
of the system, the values of A, are varied as follows: 0.005, 0.0052, 0.0054, 0.0056, and 0.0058. The
calculated failure and repair rates for additional sub-systems are as follows: A; equals 0.008, A; equals
0.0027, A4 equals 0.0009, and As equals 0.0027, As equals 0.0055, and A7 equals 0.011. The values of y; is
0.41, py is 0.4, s is 0.67, s is 0.33, ps is 0.67, and s is 6.00. Table 5.1(b) displays the results of the
calculation that was performed using these data to determine the system's level of dependability. This
table illustrates how the failure rate of CBM affects the system's dependability for the purpose of
discussion. Taking into account the number of days, the values of 1, have been taken into consideration.
With an increase in time from 30 to 360 days, the system's reliability reduces by 0.036%. However, the
system's reliability decreases by roughly 0.19% with an increase in the failure rate of CBM from 0.0052 to
0.0058, and the mean time between failures (MTBF) similarly decreases by approximately 0.19%.

Impact of CBM Failure Rate on System Reliability

Table 2

Ao 0.0050 0.0052 0.0054 0.0056 0.0058
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DAYSJ
30 0.958743 0.958284 0.957825 0.956366 0.956908
60 0.958610 0.958151 0.957692 0.957234 0.956777
90 0.958528 0.958069 0.957611 0.957152 0.956695
120 0.958477 0.958018 0.957560 0.957102 0.956643
150 0.958446 0.957986 0.957528 0.957070 0.956612
180 0.958426 0.957967 0.957508 0.957050 0.956592
210 0.958414 0.957955 0.957496 0.957038 0.956580
240 0.958406 0.957947 0.957489 0.957031 0.956573
270 0.958401 0.957943 0.957484 0.957026 0.956568
300 0.958399 0.957940 0.957481 0.957023 0.956565
330 0.958397 0.957938 0.957479 0.957021 0.956563
360 0.958396 0.957937 0.957478 0.957020 0.956562

MTBF 345.468 345.306 345.147 344.985 344.826

(iii) Dependability of the system as a function of melting vat failure rate

By changing its values to A3 = 0.0022, 0.0024, 0.0026, 0.0028, and 0.0030, the impact of sub-system D's
failure rate on the system's dependability is investigated. The following values were used to calculate the
failure and repair rates of the remaining subsystems: A; = 0.008, A, = 0.0055, A4, = 0.0009, As = 0.0027, As =
0.0055, A7 =0.0111, p1 =0.41, p, =0.40, pu3 = 0.67, pa = 0.33, us = 0.67, and pg = 6.00. Table 3 displays the
results of the reliability calculation performed on this data. The table below illustrates how the system's

dependability is affected by the melting vat failure rate. We have taken the number of days into account

while considering the A; values. The table shows that the system's dependability drops by 0.0285% in the

first quarter and stays the same in the remaining three months. As the melting vat failure rate increases
from 0.0022 to 0.0030, the reliability and MTBF both fall by around 0.11%.

Table 3

Impact of Melting Vat Failure Rate on System Reliability

s> 0.0022 0.0024 0.0026 0.0028 0.0030
DAYS

30 0.958280 0.958006 0.957732 0.957459 0.957185
60 0.958148 0.957874 0.957600 0.957327 0.957053
90 0.958066 0.957792 0.957518 0.957245 0.956971
120 0.958015 0.957741 0.957467 0.957194 0.956920
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15 0.957983 0.957707 0.957436 0.957162 0.956889
180 0.957964 0.957690 0.957416 0.957142 0.956869
210 0.957951 0.957678 0.957404 0.957131 0.956857
240 0.957944 0.957670 0.957396 0.957123 0.956850
270 0.957939 0.957665 0.957392 0.957118 0.956845
300 0.957936 0.957663 0.957389 0.957115 0.956842
330 0.957935 0.957661 0.957387 0.957113 0.956840
360 0.957933 0.957660 0.957386 0.957112 0.956839
MTBF 345.306 345.210 345.314 344.018 344.922

(iv) Dependability of the system as a function of separator repair rate

The impact of the sub-system separator's repair rate on system dependability is examined by adjusting its
values to w; = 0.30, 0.35, 0.40, 0.45, and 0.50. The failure and repair rates of the other subsystems are as
follows: A = 0.008, A, = 0.0055, A3 =0.0027, Ay = 0.0009, As = 0.0027, A¢ = 0.0055, A; = 0.0111, p, = 0.40, ps
=0.67, ua =0.33, us = 0.67, and ue = 6.00. The system's dependability is determined using this data, with
findings presented in Table 4. The table indicates that the system's dependability improves by 0.36% when
the separator's repair rate (u:) is elevated from 0.3 to 0.35, with only minimal gains for p; over 0.35.
Moreover, dependability diminishes by around 0.036% as the duration extends from 30 to 360 days. MTBF
rises by around 1.0% as the repair rate escalates from 0.30 to 0.50.

Table 4

System Reliability and the Separator Repair Rate

1>

DAYS | 0.30 0.35 0.40 0.45 0.50

30 0.951082 0.954538 0.957149 0.959188 0.960827
60 0.950950 0.954407 0.957017 0.959056 0.960694
90 0.950870 0.954326 0.956935 0.958937 0.960611
120 0.950819 0.954275 0.956884 0.958922 0.960560
150 0.950788 0.954244 0.956852 0.958891 0.960528
180 0.950768 0.954224 0.956833 0.958871 0.960509
210 0.950756 0.954212 0.956820 0.958860 0.960496
240 0.950748 0.954204 0.956813 0.958852 0.960489
270 0.950744 0.954199 0.956808 0.958847 0.960484
300 0.950741 0.954197 0.956805 0.958844 0.960481
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330 0.950739 0.954195 0.956803 0.958842 0.960479
360 0.950738 0.954194 0.956802 0.958841 0.960478
MTBF 342.787 343.997 344.909 345.622 346.220

(v) A system's dependability as a function of the CBM repair rate

By changing its values to u, =0.30, 0.35, 0.40, 0.45, and 0.50, the study examines the impact of the sub-
system CBM repair rate on the system's dependability. The following values have been used for the failure
and repair rates of various sub-systems: A; = 0.008, A, = 0.0055, A5 = 0.0027, As = 0.0009, As= 0.0027, As =
0.0055, A; =0.0111, p1 =0.41, u3 = 0.67, ua = 0.33, us = 0.67, and s = 6.00. Table 5 displays the results of
calculating the system's dependability using this data. The table shows that as the repair rate of CBM goes
from 0.30 to 0.50, the system's dependability goes up about 0.66 percentage points. Concurrently, there
is a 0.036 percentage point drop in dependability for every day that goes from 30 to 360. From a repair
rate of 0.30 to 0.50, there is an increase of around 0.64% in MTBF.
Table 5

The Impact of CBM Repair Rate on System Reliability

W > 0.30 0.35 0.40 0.45 0.50
DAYS |

30 0.953413 0.955798 0.957596 0.958998 0.959711
60 0.953281 0.955666 0.957464 0.958866 0.959578
90 0.953200 0.95585 0.957382 0.958784 0.959496
120 0.953149 0.955534 0.957331 0.958733 0.959445
150 0.953118 0.955503 0.957299 0.958701 0.959441
180 0.953098 0.955483 0.957279 0.958681 0.959393
210 0.953086 0.955471 0.957267 0.958669 0.959381
240 .953078 0.955463 0.957260 0.958661 0.959374
270 0.953074 0.955458 0.957255 0.958657 0.959369
300 0.953071 0.955456 0.957252 0.958654 0.959366
330 0.953069 0.955454 0.957250 0.958652 0.959364
360 0.953068 0.955453 0.957249 0.958651 0.959363
MTBF 343.603 344.437 345.066 345.556 345.807

(vi) Impact on system dependability of melting vat repair rate

As part of the investigation of the impact of the repair rate of sub-system melting vats on the
dependability of the system, the following values of us are considered: 0.60, 0.65, 0.70, 0.75, and 0.80. It
has been determined that the failure and repair rates of additional sub-systems are as follows: A; = 0.008,
A2 = 0.0055, A3 =0.0027, As= 0.0009, As = 0.0027, As= 0.0055, A7 = 0.0111, p, = 0.41, p3 = 0.40, pa = 0.33, ps
= 0.67, and s = 6.00. The results of the calculation that determines the system's dependability are

presented in Table 6, which may be found using these data. According to the data shown in this table, it
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is evident that the reliability and mean time between failures (MTBF) of the system experience a rise of

roughly 0.1% when the repair rate of the separator (u3) is increased from 0.60 to 0.80. The increase in

time from thirty to three hundred and sixty days results in a drop in dependability of around 0.036 percent.
Table 6

Impact of Melting Vat Repair Rate on System Reliability

Mz > 0.60 0.65 0.70 0.75 0.80
DAYS |
30 0.957165 0.957482 0.957554 0.957990 0.958196
60 0.957033 0.957350 0.957622 0.957858 0.958064
90 0.956951 0.957268 0.957540 0.957776 0.957982
120 0.956900 0.957217 0.957489 0.957725 0.957931
150 0.956868 0.957185 0.957457 0.957693 0.957899
180 0.956849 0.957166 0.957438 0.957673 0.957879
210 0.966837 0.957154 0.957426 0.957661 0.957867
240 0.956829 0.957146 0.957418 0.957654 0.957860
270 0.956824 0.957141 0.957413 0.957649 0.957855
300 0.956821 0.957138 0.957410 0.957646 0.957852
330 0.956820 0.957137 0.957408 0.957644 0.957850
360 0.956819 0.957135 0.957407 0.957643 0.957849
MTBF 344.915 345.026 345.114 345.204 345.276
PRESENT STATUS

The effect of change in failure and repair rates of some important sub-systems on the long run availability
of the system is studied in this section.

(i) The long-term availability impacted by separator and CBM failure rates

In order to investigate the impact of failure rates on the long-term availability of the system, the values
of the sub-systems S; and Ss are varied. The values of A; are as follows: 0.006, 0.007, 0.008, 0.009, and
0.010. The values of A, are as follows: 0.0050, 0.0052, 0.0054, 0.0056, and 0.0058. The rates of failure and
repair for other subsystems have been determined to be as follows: A3 = 0.0027, A4 = 0.0009, As = 0.0027,
As = 0.0055, A7 = 0.0111, p1 = 0.41, p, = 0.40, w3 = 0.67, pa = 0.33, ws = 0.67, and s = 6.00. Utilizing this
data, a calculation is performed to determine the system's availability over the long term, and the results
are presented in Table 7. The data shown in this table demonstrates that an increase in the failure rate
(A1) of the separator would have a negative impact of roughly 0.93% on the long-term availability of the
system. This is in contrast to the failure rate of the CBM (A2), which would only have a negative impact of
0.19% on the availability.

Table 7

The consequences of the failure rates of the separator and the CBM on the system's availability over
the long run
N> 0.006 0.007 0.008 0.009 0.010
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N

0.0050 0.962963 0.960675 0.958429 0.956194 0.953969
0.0052 0.962499 0.960189 0.957981 0.955729 0.953514
0.0054 0.962036 0.959268 0.957522 0.955272 0.953060
0.0056 0.961574 0.959268 0.957064 0.954816 0.952606
0.0058 0.961112 0.958808 0.956606 0.954361 0.952153

(ii) Impact of failure rates of separators and melting vats on long-term availability

We have employed fixed failure and repair rates for all sub-systems, except the separator and melting
vats, as follows: A, = 0.0055, A4 = 0.0009, As = 0.0027, A¢= 0.0055, A7 =0.0111, and p; =0.41, u; = 0.4, us =
0.67, w2 = 0.33, us= 0.67, and ps = 6.00. The failure rates for the separator and melting vats are as follows:
A1 =0.006, 0.007, 0.008, 0.009, 0.01 and A3 = 0.0024, 0.0026, 0.0028, 0.0030. The long-term availability of
the system is estimated and displayed in Table 8. This table indicates that an increase in the failure rate
of separators (A1) impacts the long-term availability of the system by roughly 0.93%, while an increase in
the failure rate of melting vats (As) affects it by around 0.12%.

Table 8
Impact of Separator and Melting Vat Failure Rates on System Long-Term Availability

> 0.006 0.007 0.008 0.009 .010

Al

0.0022 0.962527 0.960216 0.958009 0.955767 0.953542
0.0024 0.962249 0.959940 0.957733 0.955491 0.953269
0.0026 0.961971 0.959633 0.957458 0.955218 0.952996
0.0028 0.961694 0.959387 0.957183 0.954944 0.952724
0.0030 0.961417 0.958111 0.956909 0.954670 0.952452

(iii) Impact of separator failure and repair rates on long-term availability

We have also computed the system's long-term availability after adjusting for separator failure and
repairs. The outcomes of using the following data are displayed in Table 9. The following five levels of
separator failure and repair rates have been taken into consideration: A; = 1006 0.007, 0.008, 0.009, 0.010
and p; = 0.3, 0.35, 0.40, 0.45, and 0.50. A, = 0.0055 p3 = 0.0027 A4 = 0.0009, As = 0.0027 A = 0.0055 A; =
0.0111, and Y = 0.4 3 = 0.67 Py = 0.33 us = 0.67, Ye= 6.0 are the rates for the other sub-systems. Table 9
shows that a higher separator failure rate (A1) reduces the system's long-term availability, whereas a
higher repair rate enhances it. When the separator's failure rate rises from 0.006 to 0.010, availability falls
by 1.2% to 0.7%, and when the separator's repair rate rises from 0.30 to 0.50, availability rises by 0.7% to
1.2%.

Table 9
The Long-Term Availability of the System: The Impact of Separator Failure and Repair Rates
A~ 0.006 0.007 0.008 0.009 0.010
pa
30 0.956881 0.953539 0.950816 0.947812 0.944827
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35 0.959504 0.956881 0.954272 0.951677 0.949097
40 0.961481 0.959176 0.956881 0.954598 0.952325
45 0.963024 0.960969 0.958920 0.957432 0.954850
50 0.964262 0.962407 0.960558 0.958716 0.956881

iv) Impact of melting vats and CBM repair rates on long-term availability

In this area, we have adjusted the CBM and melting vat repair rates as follows: u ,= 0.3, 0.35, 0.40, 0.45,
0.50 and ps; = 0.6, 0.65, 0.70, 0.75, 0.80. The following values have been used for the failure and repair
rates of the sub-systems: A;= 0.008, A, = 0.005, A3= 0.0027, A, = 0.0009, As= 0.0027, Ae= 0.0057 A7, =
0.0111, = 0.4, pa= 0.33, pus= 0.67, and P = 6.00. Table 10 displays the results of the calculation of the
system's long-term availability using these parameters. The long-term system availability is enhanced by
both increasing the repair rate of CBM (U2) and the repair rate of melting vats, as shown in the table.
However, while both rates have an impact on long-term system availability, the former has a greater
impact of about 0.7% and the latter of only 0.1%.
Table 10
In the long run, the availability of the system is affected by the repair rates of both the CBM and the
melting vats

M2—> 0.30 0.35 0.40 0.45 0.50
[VENZ

0.60 0.952715 0.955081 0.956817 0.958284 0.959387
0.65 0.953032 0.953032 0.957138 0.958605 0.959709
0.70 0.953351 0.955720 0.957458 0.988927 0.960032
0.75 0.953533 0.955902 0.955902 0.959111 0.960216
0.80 0.953714 0.956085 0.956085 0.959295 0.960400
Conclusion:

The separator, which is part of sub-system S;, has the greatest impact on the overall system's
dependability and long-term availability, according to an analysis of Tables 1 to 6 and 7-10. Graphs 1 and
2 further show how the repair and failure rates of sub-system S; affect the system's dependability. There
are other subsystems that work almost as well [37-41]. Consequently, the butter-oil production plant's
management should pay close attention to this sub-system if they want it to operate better overall.
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