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Abstract: Traditional horticulture continues to suffer from inefficiencies due to its dependence on manual 

monitoring, delayed identification of plant diseases, and excessive use of resources, which collectively 

reduce productivity and increase operational costs. To address these challenges, this research introduces 

an integrated framework that combines IoT-based multi-sensor monitoring with image processing 

supported by edge-level CNN-based disease detection and a cloud-enabled decision support system. 

Experimental validation demonstrates notable outcomes, including 94.2% disease detection accuracy, a 

32% reduction in water usage, a 35% decrease in pesticide consumption, and a 22% improvement in crop 

yield under controlled greenhouse conditions. Owing to its scalability and practicality, the proposed 

system can be effectively deployed in greenhouses, polyhouses, and open-field horticultural 

environments to facilitate precision agriculture, optimise resource utilisation, and support sustainable 

crop management. 
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Introduction 

 

The global horticulture sector is pivotal for food security, contributing significantly to nutrition and 

economic stability. However, it remains vulnerable to environmental fluctuations, pest infestations, and 

diseases, which collectively account for approximately 35% of annual crop losses worldwide. Conventional 

farming practices rely on periodic manual inspections, which are labor-intensive, subjective, and often 

reactive rather than preventive. The advent of Industry 4.0 technologies, particularly the Internet of 

Things (IoT) and artificial intelligence (AI), offers transformative potential for precision horticulture. IoT 

facilitates real-time, granular monitoring of microclimatic parameters, while image processing enables 

non-invasive, automated plant health assessment. This paper presents a holistic, scalable system that 

integrates multi-modal sensor data with deep learning-based visual analytics to enable proactive 

horticultural management. The proposed framework not only detects anomalies early but also automates 

irrigation, fertilization, and alert generation, thereby enhancing productivity, sustainability, and resilience. 

Related work 

Recent years have witnessed growing interest in smart agriculture solutions. Early systems focused 

primarily on IoT-based soil and weather monitoring without visual analytics. For instance, Li et al. [1] 

developed a wireless sensor network for soil moisture and temperature tracking but lacked image-based 

disease detection capabilities. Patil et al. [2] combined basic image processing with IoT for leaf disease 
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identification but achieved only 88% accuracy and offered no real-time control mechanisms. Sharma et 

al. [3] advanced the field by integrating IoT with a CNN model, attaining 91% accuracy and basic 

automation features. However, their system was limited by high computational latency and poor 

scalability. Other studies have explored drone-based imaging and multispectral analysis but at prohibitive 

costs for small-scale horticulturists. Table 1 provides a comparative analysis of recent works, highlighting 

the novelty of our approach in terms of accuracy, real-time responsiveness, cost-effectiveness, and 

integration depth. 

Table 1. Comparative analysis of related works in smart agriculture and horticulture 

 

Study IoT 
Sensors 

Image 
Processing 

Real-Time 
Control 

Disease 
Detection 
Accuracy 

Scalability Cost-
Effectiveness 

Li et al. [1] 
(2020) 

Yes No No - Medium High 

Patil et al. 
[2] (2019) 

Yes Yes (SVM) No 88.0% Low Medium 

Sharma et 
al. [3] 
(2021) 

Yes Yes (CNN) Yes 91.0% Medium Low 

Chen & 
Wang [4] 
(2022) 

Yes Yes (Drone-
based) 

Yes 92.5% High Low 

This work 
(2025) 

Yes Yes 
(CNN+ResNet) 

Yes 94.2% High High 

 

Key Contribution 

This research makes the following key contributions to the field of smart horticulture: 

1. Design and implementation of a low-cost, multi-sensor IoT network capable of monitoring soil moisture, 

temperature, humidity, pH, light intensity, and CO₂ levels with 95% data transmission reliability. 

2. Development of a hybrid image processing pipeline combining traditional computer vision techniques 

(Otsu thresholding, HSV segmentation) with a fine-tuned ResNet-50 CNN model for early and accurate 

detection of common horticultural diseases (e.g., powdery mildew, leaf blight, bacterial spot). 

3. Integration of sensor and image data into a unified cloud-based decision support system that provides 

real-time alerts, automated irrigation scheduling, and nutrient recommendation reports via a responsive 

web dashboard. 

4. Comprehensive field validation over 120 days in a tomato greenhouse, demonstrating statistically 

significant improvements in yield, resource efficiency, and disease management compared to 

conventional methods. 

Method, Experiments and Results 

System Architecture 

The proposed system is structured into three layers: perception, edge, and cloud. The perception layer 

comprises wireless sensor nodes (ESP32-based) equipped with DHT22 (temperature/humidity), capacitive 

soil moisture sensors, pH sensors, BH1750 (light), and MQ-135 (air quality). Each node transmits data via 
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LoRaWAN to an edge gateway (Raspberry Pi 4). A 12 MP Raspberry Pi camera module captures plant 

images at scheduled intervals. The edge layer performs initial image preprocessing and runs a lightweight 

CNN model for real-time inference. The cloud layer (AWS IoT Core) aggregates data, hosts a deeper 

ResNet-50 model for detailed analysis, and manages the user dashboard. 

Image Processing and Disease Detection Pipeline 

The image analysis follows a four-stage pipeline: 

1. Preprocessing: Images are resized to 224×224, converted to HSV colour space, and subjected to 

histogram equalisation. 

2. Segmentation: Otsu’s method and k-means clustering isolate leaf regions from the background. 

3. Feature Extraction: A pre-trained ResNet-50 extracts 2048-dimensional feature vectors. 

4. Classification: A fully connected neural network with dropout (0.5) and softmax output classifies leaves 

into: Healthy, Powdery Mildew, Early Blight, Late Blight, or Bacterial Spot. 

The model was trained on 8,000 labelled images from the PlantVillage dataset and augmented with 2,000 

locally captured images. Data augmentation included rotation, flipping, and brightness adjustment. 

Experimental Setup 

The system was deployed in a 0.5-acre greenhouse cultivating tomatoes (Solanum lycopersicum) in Tamil 

Nadu, India, from January to April 2025. The greenhouse was divided into two sections: an experimental 

zone (IoT-enabled) and a control zone (traditional farming). Both zones followed identical planting 

patterns, irrigation schedules (initially), and pest management protocols. Data was collected every 10 

minutes from sensors and daily from cameras. 

Table 2. Sensor specifications and measurement ranges 

 

Sensor Parameter Range Accuracy Sampling Interval 

DHT22 Temperature -40°C to 80°C ±0.5°C 10 min 

DHT22 Humidity 0–100% RH ±2% 10 min 

Capacitive Soil Moisture Soil Moisture 0–100% VWC ±3% 10 min 

pH Sensor (Analog) Soil pH 0–14 ±0.1 60 min 

BH1750 Light Intensity 0–65535 lux ±10% 10 min 

MQ-135 CO₂ 10–1000 ppm ±15% 30 min 

 

 

Results 

Disease Detection Performance: The hybrid CNN model achieved an overall accuracy of 94.2%, with 

precision and recall scores as detailed in Table 3. 

Table 3. Disease detection performance metrics (confusion matrix derived) 

Class Precision Recall F1-Score Support (Images) 

Healthy 0.96 0.95 0.955 450 

Powdery Mildew 0.93 0.94 0.935 420 

Early Blight 0.94 0.92 0.930 400 

Late Blight 0.95 0.96 0.955 380 

Bacterial Spot 0.92 0.94 0.930 350 

Weighted Avg 0.94 0.94 0.942 2000 
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Resource Optimisation: The IoT-enabled section demonstrated significant savings (Table 4). 

Table 4. Resource usage comparison: IoT vs. Traditional section (120-day period) 

 

Resource IoT Section Traditional Section Reduction 

Water (liters) 12,500 18,400 32.1% 

Fertilizer (kg) 45 62 27.4% 

Pesticide (liters) 8.2 12.6 34.9% 

Energy (kWh) 210 290 27.6% 

 

Yield and Quality Improvement: The experimental zone yielded 3.8 kg per plant compared to 3.1 kg in the 

control zone—a 22.6% increase. Fruit quality (measured by brix level and visual grading) was also superior 

in the IoT section. 

Discussions 

The results validate the efficacy of integrating IoT and image processing for precision horticulture. The 

high disease detection accuracy (94.2%) outperforms previous studies, primarily due to the hybrid model 

combining traditional segmentation with deep learning. The resource savings align with global 

sustainability goals, demonstrating that smart technology can reduce water and chemical usage without 

compromising yield. The real-time alert system enabled early interventions, reducing disease spread by 

40% compared to the control section. 

However, challenges were encountered: 

1. Sensor calibration drifts over time, requiring weekly recalibration. 

2. Image occlusion due to leaf overlap, which occasionally led to false negatives. 

3. Initial setup cost (~$500 per 0.1 acre), which may be prohibitive for small farmers without subsidies. 

Future work will focus on: 

•Incorporating drone-based multispectral imaging for larger areas. 

•Using blockchain for secure, transparent data logging and supply chain integration. 

•Developing a mobile app with offline inference capabilities for regions with poor internet connectivity. 

 

Conclusions 

The study addresses the limitations of conventional horticultural practices, which rely heavily on manual 

monitoring, often resulting in delayed disease identification and unnecessary resource consumption. To 

overcome these challenges, a multi-layer IoT framework was implemented, integrating hybrid image 

processing techniques that combine CNN-based deep learning with traditional computer vision methods, 

supported by a cloud-enabled decision support system. Experimental evaluation demonstrated highly 

encouraging outcomes, including 94.2% accuracy in disease detection, a 32% reduction in water usage, a 

35% decrease in pesticide consumption, and a 22.6% improvement in crop yield. Despite its strong 

performance, the system requires periodic sensor calibration and involves initial setup costs; future 

enhancements will focus on incorporating drone-based imaging and blockchain technologies to further 

improve scalability, reliability, and data security. 
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