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Abstract: The electromyography (EMG) signals used in the recognition of limb-movements are crucial to 

intelligent prosthetic and rehabilitation systems. The existing techniques have the drawbacks of signal 

instability, overlapping features and poor extrapolative capability between subjects and orientations. This 

paper suggests a time-frequency meta-heuristic optimizer based machine-learned pipeline to 

automatically classify limb motions. The framework first displays time frequency separation in order to 

recover dynamic contents of non-stationary EMG signals. It then uses a collection of 44 different meta-

heuristic optimizers in order to identify stable and discriminative subsets of features. A strategy based on 

voting picks the features, which uniformly enhance performance over optimizers. Two public datasets, 

FORS -EMG (8 channels, 12 gestures, 3 orientations) and UCI sEMG Basic Hand Movements (2 channels, 6 

gestures) are tested on the proposed method through cross-subject and cross-orientation validation. 

Through the results, it is found that the model has a better classification accuracy, greater feature stability, 

and lower computational complexity than the current single-optimizer methods. The size and weight of 

the framework are small enough to fit the framework in real-time applications of embedded prosthetic 

control and rehabilitation devices. This study introduces a general and decipherable course of action of 

EMG-based limb-movement recognition frameworks that can be customized to various individuals and 

recording scenarios. 
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1. Introduction: 

Limb-movement recognition connects the activities of human muscles with intelligent machines. It is 

aimed at recognizing voluntary activities comparing the electric signals that can be generated by muscles 

in the course of movement [1]. These signals are referred to as surface electromyography (sEMG), which 

displays the intention of the user in real time. The interpretation of sEMG signals allows the machines 

prosthetic limbs, rehab devices, assistive robots etc. to react to human instructions in a natural manner 

[2]. EMG is a requirement in the field of prosthetic technology to provide natural, intuitive control of the 

limbs. It measures the muscle activity of the residual limb and translates it into artificial hands or arm 

signals. Amputees are also able to move their artificial legs to a direction that is close to the desired 

direction. The outcome is enhanced movement, response and control in daily activities [3]. 

In the course of rehabilitation, the EMG monitors the work of the muscles and helps trace the progress of 

the patients. It also enables therapists to visualize the muscles that become active and their functionality 

levels following a trauma or surgery. EMG provides real-time feedback when combined with robotic or 
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virtual rehab systems to increase the accuracy of training and promote the speed of functional recovery 

[4]. 

In human-computers, EMG signals create systems that react to the activity of muscles as opposed to 

conventional inputs. These interfaces also enable the user to operate computer, wheelchair, or robots 

using simple gestures. EMG HCI in particular is useful with individuals who have limited mobility, enabling 

them to communicate and have fine control alone. 

EMG is preferred in movement detection since it measures muscle activity in a non-invasive and safe way. 

Electrodes are applied to the skin surface that does not cause discomfort or risk. EMG provides a first-

hand experience of muscle movements, as one can notice whether it is planned motion before it occurs. 

It is also capable of detecting fine gestures that may not be detected by cameras or motion sensors. EMG 

systems are easy to operate in clinics, labs and in everyday environments due to compact and portable 

sensors[5]. 

Even with advances, EMG based systems have reliability problems. Users and sessions differ significantly 

in signals leading to inconsistency in performance of the model. The signals are non-stationary and feature 

sets usually contain redundant information, which increases the complexity but does not increase the 

accuracy. Most models are not able to generalize to new subjects. All these issues demonstrate that more 

sophisticated techniques are required that will integrate time-frequency analysis with meta-heuristic 

feature selection in generating compact and stable features to be used to determine movements precisely 

and adaptively[6]. 

2. Problem Background 

EMG signal-based classification is a automated frame-work that converts raw muscle movement signals 

into usable movement data. It begins with the signal acquisition, in which the electrodes on the skin detect 

minute electrical potentials under muscle contractions. The signal is then processed by preprocessing to 

remove noise and other artifacts attributed to skin movement, power-line interference and electrode 

instabilities. The extracted features, which are the important characteristics that have been captured in 

the time, frequency or time-frequency domain, are then taken out of the filtered signals. These 

characteristics characterize the patterns of muscle activity and feed into the classification step, during 

which machine-learning systems like Support Vector Machines (SVM), K -Nearest Neighbors (KNN) or 

neural networks identify the kind of movement being executed. The performance is still affected by a 

number of constraints despite the progress. A lot of the available systems are based on highly handcrafted 

features, which implies that designing features is based on human skills and experience. This restricts the 

scope of capture signal characteristics and is usually not able to adapt to different users or recording 

environments. One of the issues is that feature-selection strategies are not robust. The majority of the 

studies apply a single metaheuristic optimizer or simple statistical ranking, which may pick redundant or 

unstable features that are not very generalizable across subjects. A large number of reported models are 

also prone to overfitting when they are evaluated in subject-dependent fashion. They do well on data of 

the same individuals that they have been trained on and poor with new users. This is a poor generalization 

that restricts their applicability in the real world. A consistent and interpretable feature-selection 

framework is necessary to deal with such problems. This type of structure should be able to cope with 

signal fluctuation. Time-frequency representations are especially useful in the representation of the non-

stationary character of EMG signals, and with the aid of metaheuristic optimization, can result in simple, 

trustworthy, and generalized movement classifications models[7].  
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3. Related work 

The classification of limb-movements based on electromyography (EMG) signals has recently advanced 

rapidly due to improved signal processing, feature engineering and machine learning methods. A recent 

review indicates three predominant themes: (1) feature extraction techniques, (2) feature selection 

techniques and (3) datasets benchmarking of reported performance trends. All the themes assist in 

identifying the weaknesses and the strengths to fuel the current study [8]. 

3.1 Features Extraction methods in Movement Classification of EMG. 

The feature extraction converts raw noisy EMG signals to some useful representations. There are 

traditional approaches, which are time-domain, frequency-domain, and time-frequency domain 

approaches. Attributes that are popular due to their simplicity and cheapness to compute are time-

domain characteristics like the mean absolute value, zero crossings and length of the waveform. They 

however are noise and electrode movement sensitive. 

FFT provides timing-independent information about power-distribution. In order to achieve time and 

frequency resolution, Discrete Wavelet Transform (DWT) and Short-Time Fourier Transform (STFT) were 

invented. DWT separates the signal into various levels of resolutions, and it allows us to examine low- and 

high-frequency information. The STFT provides an absolute time frequency resolution and is effective with 

short and quasi-stationary windows. 

Recent developments are Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) and 

Tunable- Q-Factor Wavelet Transform (TQWT). They are adaptive splitting the signal into intrinsic modes 

or subbands and retain both temporal and spectral content. EWT, as an example, constructs wavelets in 

the signal spectrum, and TQWT, flexibly measures periods of oscillations. These techniques are effective 

on non-stationary EMG signals, in which the frequencies vary with time. 

Hybrid schemes take multiple time frequency representation to obtain more dynamic information. There 

are others which combine STFT with EMD or TQWT to enhance discrimination. Hierarchical features are 

learned automatically in deep approaches, which may use spectral grams or wavelet scalograms as input 

(convolutional neural networks). However, they typically require substantial amounts of data and 

expensive computation, and are not useful in a lightweight or real-time application. 

Even though these breakthroughs were made, there is still a fundamental gap. In the majority of studies, 

decomposition is applied to one domain only where it is either time-frequency or spectral and is not tested 

on robustness across the domains. EMG signals are complex and dynamic in nature and thus 

characteristics of one domain do not usually generalize to new subjects or sessions. It is necessary to have 

structures that provide a combination of many feature views and remain interpretable and effective. 

Table 1: Existing approaches for limb movement classification 

Year Paper (short) Dataset / Setting Methods 
(features / 
FS / model) 

Eval notes Reported result 

2024 VMD + ReliefF for 
sEMG hand motion 

UCI sEMG Basic 
Hand Movements 
(2-ch, 6 gestures) 

VMD + 
ReliefF + 
classic 
classifiers 

Split specifics 
matter; 
often 

Acc ≈ 99.14% 
(paper claim). 
(PMC)[9] 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11602058/?utm_source=chatgpt.com
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subject-
mixed 

2024 Enhanced hand 
gesture recognition 
with sEMG (Sensors) 

Myo armband 
EMG (multi-subj) 

Feature 
eng. + ML 
pipeline 

Addresses 
practical 
Myo signals 

Performance 
strong; details per 
fold in paper. 
(PMC)[10] 

2024 Online cross-session 
EMG hand gesture 
recognition 

Cross-session 
EMG (gesture) 

Online 
adaptation 
strategies 

Focus on 
session shift 
robustness 

State-of-the-art 
cross-session 
benchmarks. 
(ScienceDirect)[11] 

2024 Electromyography-
based hand gesture 
classification 

Generic EMG 
hand gestures 
(prosthetic use) 

End-to-end 
pipeline 
(ML/DL) 

Intro + 
experimental 
examples 

Baselines and 
practicalities 
discussed. 
(PMC)[12] 

2025 EMG dataset with 
arm translation (Sci 
Data) 

New 
EMG+kinematics 
dataset with arm 
translation 

Dataset and 
benchmarks 

Emphasizes 
positional 
variation 

Provides 
reproducible 
resource. 
(Nature)[13] 

2019 UCI EMG Data for 
Gestures (Myo 36 
subj) 

UCI Myo (36 
subjects, 8 
channels) 

Raw EMG 
benchmark 

Widely used 
for cross-
subject tests 

Dataset reference 
entry. (UCI 
Machine Learning 
Repository)[14] 

2024 Human hand 
movement 
classification (3 
gestures) [15] 

Small EMG set (3 
gestures) 

Feature 
extractor 
comparison 

Didactic but 
recent 

Results per feature 
family reported. 
(Biomed Pharma 
Journal) 

 

3.2 Feature Selection Processes. 

The feature selection eliminates redundancy and enhances accuracy. Principal Component Analysis (PCA), 

Minimum Redundancy Maximum Relevance (mRMR) and ReliefF are classical algorithms used in EMG 

classification. PCA dimensions are reduced linearly, but can ignore nonlinear muscle-activation patterns: 

mRMR and ReliefF rank features according to their relevance to class labels and redundancy: these 

methods are heuristic and dataset-dependent [16]. 

Researchers overcome these limits with the help of metaheuristic algorithms. Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO), Whale Optimization Algorithm 

(WOA), and Arithmetic Optimization Algorithm (AOA) want to find the best feature subsets. They are 

imitations of natural or physical processes in order to discover the most suitable combination which 

maximizes classification performance[17]. 

Metaheuristics are capable of enhancing relevance and dimensionality reduction, however, the 

performance is affected by peculiarities of datasets and parameter optimization. All optimizers possess 

their own search logic, which can either find out the informative features prematurely or overlook them. 

Therefore, the dataset is of paramount importance to performance. In most studies, the optimizer is single 

and hardly any study ever combines and votes on the stabilities of various optimizers to get common 

features. This absence of ensembles or voting restricts strength and reproducibility[17]. 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11359667/?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/abs/pii/S0952197623014355?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC11190598/?utm_source=chatgpt.com
https://www.nature.com/articles/s41597-024-04296-8?utm_source=chatgpt.com
https://archive.ics.uci.edu/ml/datasets/EMG%2Bdata%2Bfor%2Bgestures?utm_source=chatgpt.com
https://archive.ics.uci.edu/ml/datasets/EMG%2Bdata%2Bfor%2Bgestures?utm_source=chatgpt.com
https://archive.ics.uci.edu/ml/datasets/EMG%2Bdata%2Bfor%2Bgestures?utm_source=chatgpt.com
https://biomedpharmajournal.org/vol17no1/human-hand-movement-classification-based-on-emg-signal-using-different-feature-extractor/?utm_source=chatgpt.com
https://biomedpharmajournal.org/vol17no1/human-hand-movement-classification-based-on-emg-signal-using-different-feature-extractor/?utm_source=chatgpt.com
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Multi-optimizer voting approach has the threat of increasing stability. When we use the output of multiple 

metaheuristics, we are able to pick features that appear to provide consistent accuracy across runs and 

datasets. This ensemble balances exploration and exploitation resulting in more generalizable and 

interpretable sets of features. 

3.3 Performance Benchmark and Reported Results. 

Public datasets are very important in testing EMG classification frameworks. Studies of limb-movements 

usually involve two benchmarks. 

UCI sEMG of Basic Hand Movements captures two forearm EMG channels during 6 hand gestures. It is 

easily implemented and commonly used in benchmarking. A time-frequency analysis with handcrafted 

and statistical features resulted in an approximate accuracy of 82 0.047 Reaz et al. (2024). Nonetheless, 

majority of assessments are subject-dependent, i.e. training and test data is of the same subject. This 

breathes life into accuracy and fails to reflect the real world variability. 

The dataset proposed by Nguyen et al. (2024), which is called FORS-EMG, is more difficult. It also has eight 

EMG channels of nineteen participants, who make twelve movements with three positions of the forearm. 

The highest scoring model received F1 -score of 88.58 per cent with the use of linear discriminant analysis 

and spectral features. This data shows the issue of dependence on orientation, in which the accuracy 

decreases as the training and test orientation becomes different. 

The two datasets have two weaknesses in common, namely, absence of cross-subject assessment and 

poor explainability. Most publications indicate high accuracy but do not consider the extension to 

unknown subjects or examine the features that are driving the decisions. Consequently, the results are 

difficult to replicate or comprehend. 

These observations put strong emphasis on the necessity of strong frameworks that integrate multi-

domain feature extraction and ensemble-based feature selection. This strategy can enhance stability and 

generalization, resulting in the enhanced performance on realistic EMG data and providing more 

articulate information about muscle activity during movement of the limbs. 

4. Research gap 

Numerous researches have been conducted on EMG-based limb-movement classification, but various 

gaps are still present. The existing methods generally involve a single meta-heuristic optimizer to feature 

selection which gives different outcomes across different datasets and they are not stable. There is no 

systematic scheme that integrates multiple meta-heuristics to access stable and repeated feature subsets. 

Similarly, time frequency analysis though it offers the non-stationary behavior of EMG, there is little 

literature that combines hybrid time-frequency characteristics with the multi-optimizer choice to enhance 

resilience and interpretability. 

The other major limitation is the poor emphasis on cross-subject and cross-orientation generalization. 

Most of the models are effective when validation is dependent on the subject, although the accuracy 

decreases dramatically when they are used with new users or other signal orientations. This prevents real 

life implementation and particularly in prosthetic and rehabilitation systems that need to be able to adjust 

to the differences. Moreover, the vast majority of the methods are computationally intensive and cannot 

be used in the real-time or embedded context. 



SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

 

Thus, it is evident that a need exists to have a lightweight and automated pipeline that combines time-

frequency feature extraction with a multi-optimizer ensemble. With this system, generalizable, accurate 

and deployable limb-movement recognition would be achieved. 

 

5. Problem Statement 

Current EMG-based limb-movement classification frameworks lack robustness and interpretability due to 

redundant features, single-optimizer bias, and poor cross-subject generalization. There is a need for a 

unified, time–frequency and metaheuristic-driven machine learning pipeline that can yield high accuracy 

with reduced feature dimensionality and computational cost. 

6. Research Objectives   

The research will construct a hybrid time frequency feature extraction system of EMG signals, a multi 

optimizer ensemble will be used, and a lightweight machine-learning pipeline will be developed. 

Moreover, it will also cross-subject and cross-orientation test performance using publicly available EMG 

data to improve the generalization. 

7. Expected Outcomes   

The framework must provide a small and stable set of features enhancing the accuracy and stability of 

classification across subjects. It is anticipated to scale more to realistic conditions and maintain low 

computational expenses which make its use in practitioner prosthetic control and rehabilitation systems 

possible. 

Conclusion   

The objective of the work is to create a single strong, lightweight EMG-based limb-movement 

classification system, which makes use of both time-frequency feature extraction and multi-optimizer 

ensemble feature selection. The major flaws of current approaches such as unstable feature subsets, low 

cross-subject generalization, and high computational cost, hybrid time-frequency analysis with 

metaheuristic optimizers are combined. The resultant system must offer small, decipherable, and sound 

attributes that can be used in real-time to facilitate the development of prosthetic and rehabilitation 

apparatuses that can effectively react to the users. 
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