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Abstract: Brain and lung cancers are among the most deadly cancers worldwide while improving the
outcome for patients depends on the early detection of these diseases. traditional methods of imaging
involve time-consuming manual assessments, which introduces the possibility of errors. The focus of this
research is a hybrid deep learning model framework, along with Explainable Al (XAl) for enhanced
classification and detection of tumours in the brain and lungs. Detection of brain tumours is done through
MRIs while lung tumors are detected through CT scans. The framework attempts to combine
convolutional neural networks with XAl methods including Grad-CAM and SHAP for providing transparent
explanations for predictions made by the system. the models developed XAl and hybrids with deep
learning methods and defined and enhanced numerous frameworks for evaluation and benchmarks for
the study in the areas of accuracy, precision, recall, and F1-score. Visual explanations promote trust, aid
in the decision-making process, and assist the clinicians. This model is aimed at designing an approach for
early diagnosis and an effective treatment plan.
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l.Introduction

Lung and brain tumours are worldwide two critical health problems and are associated with the highest
rates of morbidity and mortality. Timely and precise diagnosis of these tumours is essential, not only for
effective treatment but also for positive patient prognoses. Standard diagnosis for brain tumours is done
through MRIs and for lung tumours, CT scans. These methods do produce high-quality images, but a
significant amount of diagnostic inference relies on the radiologist. This can be inefficient, subjective, and
prone to error, thus enabling a cascade of misdiagnoses and delays in treatment.

Recently, there is hope for automation in cancer detection using Al and deep learning. Medical image
analysis is an area where these technologies can be particularly effective. Models based on convolutional
neural networks incorporate and learn computational imaging patterns, enabling the precise classification
and segmentation of tumours. Clinical use of these models is, however, hampered by the opaque nature
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of their decision-making “volumes of black boxes.” This is a major impediment to trust from clinicians who
need interpretability to endorse Al-aided plans.
With the focus on transparency and comprehension in Al-driven decision-making, explainable Al (XAl)
attempts to fix the problem. XAl-based technologies not only identify tumour locations, but also explain
and justify their predictions, which aids in the validation and endorsement of their clinical use.
Researchers combine XAl with advanced image processing and machine learning to enhance
interpretability in recognizing brain and lung tumours; their ultimate goal is to integrate computational
intelligence with clinical practice.

2. OTHER RELATED WORKS
This research uses explainable artificial intelligence (XAl) for a framework for more effectively detecting
brain and lung cancer. The technology will aid in increasing the accuracy of diagnosis to facilitate
immediate clinical intervention, but also help create positive perceptions of Al in the healthcare industry.
Additionally, this study seeks to differentiate, better align with clinical applications, increase transparency
in and provide an automated solution for the detection of tumours using Multiple Imaging Modalities,
Feature Fusion and XAl. In medical image analysis, the rapid development of Artificial Intelligence (Al),
and particularly deep learning, has brought many innovations. It successfully classifies and detects brain
and lung tumours. The analysis has a high level of performance, but the deep neural networks used
To address these issues, Explainable Artificial Intelligence (XAl) has come up, aiming to generate
understandable rationales to provide transparency and trust in models predicting medical decisions [1],
[2]. In the past few years, scholars started embedding techniques of XAl in deep learning frameworks,
focusing on boosting diagnostic trustworthiness and the reliability on the diagnoses made by the doctor.
Convolutional Neural Networks (CNNs), U-Net variants, and hybrid networks have been successfully deep
learning models used for brain tumour detection. Bouhafra et al. [3] analysed the use of CNNs and U-Net
frameworks to the BraTS MRI dataset and claimed that interpretability of models was greatly improved
with the use of attention mechanisms and Grad-CAM visualizations. Explainable U-Net segmentation
model proposed by Hassan et al. [4], with the inclusion of tumor boundary delineation via Grad-CAM
overlays, aided clinicians in visual tumour boundary validation. Explainable CNN models built by Iftikhar
et al. [7] and Gundogan [8] were supplemented with Grad-CAM and encapsulated SHAP and LIME
methods to decision region of MRl images. Similarly, Aksoy et al. [11] used BraTS MRI data to build a web-
based explainable segmentation tool for medical professionals, interactive visualization was the main
aspect.
These methods stress how adding explainability to segmentation or classification structures improves int
erpretive value and clinician trust. To strike a compromise between explainability and accuracy, a number
of hybrid and optimized topologies have been investigated. A hybrid CNN and explainable machine
learning framework was presented by Nahiduzzaman et al. [10], which offered visual heatmaps for model
reasoning. An attention-based approach that was refined by Aiya et al. [9] increased interpretability and
classification accuracy. Studies have used a variety of datasets, including the BraTS dataset on an annual
basis, to establish benchmarks for determining the quality of the prediction models created by each
research group compared to that of a physician's interpretations. Additionally, while the authors have
noted that model accuracy is essential to support clinical decisions, the ability of the model to provide a
high level of interpretability may play a significant role in future adoption within the healthcare field.
Explainable artificial intelligence will have a similar impact on the ability to detect lung tumors as it will on
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the use of machine learning to improve the accuracy of diagnosed tumours. As an example, Hung and his
colleagues [5] developed an interpretable model based on a three-dimensional CNN architecture to
classify lung nodules from images within the LIDC-IDRI dataset, with the assistance of voxel-level saliency
maps to visually identify nodules that were defined as malignant. Additionally, Hammad et al. [14] created
a custom-built CNN that employed Grad-CAM to identify lung nodules, and Sebastian et al. [15] provided
a low-cost and easy-to-understand diagnostic pathway that would be adaptable to lower-resource clinical
environments. In a meta-analysis comparing Al and radiologists in the diagnosis of lung cancer, Rodriguez
et al. [12] found that while explainability is a necessary condition for clinical trust, Al and radiologists had
similar accuracy. In his study on the combination of radiomics with explainable machine learning, Martell
[16] found that interpretable radiomic feature importance was provided by SHAP-based analyses. These
results demonstrate that transparent and therapeutically significant predictions in lung imaging are made
possible by integrating explainability with sophisticated CNN and hybrid frameworks.

Several survey publications have summarized the advancements and difficulties of explainable Al in
healthcare, going beyond these application-specific studies. In their analysis of hundreds of XAl-based
medical imaging studies, Van der Velden et al. [1] and Muhammad et al. [2] divided methods into three
categories: gradient-based, perturbation-based, and intrinsic attention. While XAl has increased the
transparency of models, the authors of the paper mention the absence of uniform evaluatory standards
for interpretability. In contrast to Dagnaw et al. [19] who center on the methodological consistency and
evaluation fidelity concerning the biological imaging field, Ennab et al. [18] describe an interpretability
framework at the pixel level (PLI) that produced superior localization compared to Grad-CAM. It is
noticeable that these studies, and many others, have in focus the pursuit of interpretability as one of the
key tenets of the goal of research while retaining the required level of accuracy.

Despite the advancements, challenges remain. To start, there is the matter of how accurate explanations
are given that, in part, stems from the use of Grad-CAM and similar tools in post-hoc explanation that may
not depict the actual reasoning behind the models [6], [20]. In addition, the absence of evaluative criteria
is an impediment to cross-study analysis [2], [19].

Third, generalization across scanners and patient demographics is impacted by limited population
diversity and dataset bias [14]. Furthermore, despite the regular reporting of segmentation accuracy
measures like Dice and loU, few research assess the clinical relevance of the combination of
computational intelligence and human interpretability has the potential to redefine early cancer
diagnosis, enabling safer, explainable, and patient-centered healthcare systems.

3. METHODOLOGY

The proposed framework shown in Fig.1 for advanced detection of brain and lung tumors through
Explainable Artificial Intelligence (XAl) integrates deep learning models with interpretability techniques to
enhance diagnostic trust and clinical usability. The workflow involves four major stages: data acquisition
and pre-processing, model development, explainability integration, and evaluation.
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Fig 1. Flow diagram of proposed model

3.1 Data Acquisition and Pre-processing

Two benchmark medical imaging datasets were employed: the BraTS 2021 dataset for brain tumour MRI
scans and the LIDC-IDRI dataset for lung CT images. Each dataset underwent pre-processing steps such as
image normalization, contrast enhancement, and resizing to standard dimensions (224x224 pixels) shown
in Fig.2 . Data augmentation, including random rotation, flipping, and Gaussian noise addition, was used
to improve generalization and mitigate overfitting issues.

BEFORE PRE PROCESSING AFTER PRE PROCESSING

Fig.2 Pre-processed Image
3.2 Model Development
To effectively learn both fine-grained and global image features, we engineered a hybrid CNN architecture
that fuses VGG-16, InceptionV3 and ResNet50 backbones. Cross-domain transfer learning was
implemented by specifically fine-tuning the last three convolutional layers, followed by training the model
on the convolutional neural networks. We used the Adam optimizer with a learning rate of 0.0001 and
categorized cross-entropy loss. To integrate the multi-layered attention mechanism for feature fusion, we
focused on the regions of the CNN that indicated the presence of the tumour for bleeding control.
3.3 Explainability Integration
Model trust and interpretability were achieved by the use of explainability methods, specifically Grad-
CAM, LIME, and SHAP. These methods provided the justification the clinical expert needs in validating the
model by showing the areas of the image that were critical and how the model used them in the
classification decision for the prediction. Cross-validation provided the quantitative results and rational
metrics, in the described explainability methods.
3.4 Evaluation Metrics
Performance metrics included those listed in Table 1: accuracy, precision, recall, F1-score, and AUC (Area
Under the Curve). A 5-fold cross-validation method was additionally used, and explainability metrics,
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including fidelity, completeness, and human interpretability, were included for scoring the model
explanations.

Table 1 Performance analysis

Model/Dataset Accuracy (%) Precision (%) Recall (%) Fl-score (%) AUC
VGG-16 95.1 94.5 93.8 94.2 0.96
ResNet50 95.6 95.2 94.7 94.9 0.97
DenseNetl121 96.2 95.8 95.1 95.4 0.97
InceptionV3 96.8 96.3 95.9 96.1 0.98

ed Hybrid CNN + XA 98.4 97.9 98.2 98.0 0.99
sed Hybrid CNN + XA 97.8 97.1 96.8 96.9 0.98

4. RESULTS AND DISCUSSION

Once again, the hybrid explainable deep learning model outperforms the baseline models in both the
brain and lung tumour classification tasks. For the BraTS dataset, the proposed framework scored an
accuracy of 98.4%, precision of 97.9%, and AUC of 0.99, whereas standard CNN architectures like
ResNet50 and DenseNet121 scored 95.6% and 96.2%, respectively. For the model used with the LIDC-IDRI
dataset, the model scored an accuracy of 97.8% and an Fl-score of 0.96, proving its accuracy in
differentiating malignant and benign nodules (see Fig. 3 & 4).

The referable decisions are markedly enhanced with the incorporation of XAl. In nearly 94% of the testing
instances, Grad-CAM visualizations contained pinpoint accuracy in aligning the tumour borders to regions
marked by the radiologist. The LIME and SHAP analysis enhanced the rationale of the decision and
interpretability by describing the pixel feature contributions for the clinicians. This transparency is crucial
for clinical adoption, as it bridges the gap between automated systems and human expertise.

In comparison to prior works relying on only deep CNNs without explainability, the proposed framework
showed the highest diagnostic reliability and trustworthiness. The network effectively captured tumour
morphological and textural alterations thanks to hybrid feature fusion and attention weighting. Moreover,
the integration of explainability helped to identify false positives caused by artifacts or benign
abnormalities, thus increasing the accuracy of the diagnosis.

Qualitative assessment of the XAl covex visual outputs by medical professionals demonstrated that
predictability was enhanced and actionable assistance in the diagnostic process was provided. The
diagnostic clarity and predictability of the framework constitutes its clinical relevance and promotes the
use of Al tumour detection systems as diagnostic aids. For a clinically validated decision support model,
this research aims to one day expand to more multi-modal data (PET-MRI fusion).
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Fig .4 Accuracy and Loss Curves

5. CONCLUSION

As the research elaborated, this study offers an explainable Al (XAl) framework for the detection of the
brain and lung tumours and combines deep learning hybrid architectures. The system's implementation
of VGG-16, InceptionV3, and ResNet50 model fusion and attention-feature deep learning provided deep
learning systems that created state-of-the-art distal performance on accuracy, precision, and robustness
across both MRI and CT datasets. The incorporation of explain ability modules such as Grad-CAM, LIME,
and SHAP not only enhanced interpretability but also established trust between automated decision-
making and clinical validation.

The developed model attained 98.4% accuracy in classifying brain tumours and 97.8% accuracy in
detecting lung tumours, surpassing the performance of typical CNN-based methods. In addition, the XAl
visualizations generated were able to pinpoint tumour locations, corresponding closely to the oncologist
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markings, and demonstrating the system’s dependability and transparency in diagnostics. This underlines
the need of using explainable models in the health care field because besides accuracy, the reasoning of
a model’s predictions also requires an understanding.

The merging of deep learning and explainability indicated in this study has the potential to bridge the gap
between Al and its clinical application.

With explanatory outputs and visual justification, this method supports the Al-assisted diagnosis of deep
learning models that is reliable, clear, and suitable for use in a clinical setting. Explaining Al’s role in
precision oncology and medical imaging continues to be her priority. In explaining Al, her aim is to close
the gap in clinical use of the technology.
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