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Abstract

This paper introduces a comprehensive study of artificial intelligence (Al) optimisation
techniques for unmanned aerial vehicle (UAV) flight path planning for fog dispersal operation.
The research relates to the critical challenge of fog-related disruptions in the aviation industry,
which result in major economic losses in excess of $100 million annually at major airports
around the world. By combining powerful artificial intelligence algorithms, such as
reinforcement learning, genetic algorithm and neural network, this study proposes an
intelligent UAV based fog dispersal system capable of autonomous path optimisation and real-
time adaption. The system uses MATLAB / simulink for the simulation of UAV dynamics and
ANSYS Fluent / OpenFOAM for the fog behaviour modelling, which is integrated to machine
learning algorithms, to be used for the dynamic navigation and decision-making. Simulation
results show that Al-optimised UAV flight paths have 35% better coverage efficiency and 40%
decrease in consumption of seeding agents when compared to traditional fixed pattern
approaches. The proposed system has significant advantages in terms of visibility, operational
efficiency and environmental sustainability, which could revolutionise fog management
strategies at airports across the world.

Keywords: Artificial Intelligence, UAV Flight Path Optimisation, Fog Dispersal, Reinforcement
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1. Introduction

Fog poses one of the most persistent and economically costly weather phenomena to aviation
operations throughout the world. According to recent studies, the economic losses of
disruptions to major airports caused by fog are between $S0.5 million to $1.78 million per year,
with significant effects on flight delays, cancellations, and passenger inconvenience [1]. The
Indira Gandhi International Airport in India alone experienced economic losses of between
0.5 million and 1.78 million dollars a year between 2011 and 2016 as a result of fog-related
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disruptions [2]. These significant economic impacts alongside safety concerns and operational
inefficiencies have led to the search for more effective fog dispersal technologies.

Traditional approaches to fog dispersal such as thermal heating systems and chemical seeding
from ground-based installations or manned aircraft have major limitations, however, in cost,
efficiency, and environmental consequences [3]. For ground-based thermal systems,
infrastructure investments of $10 million plus with annual operating costs in the $1 million
range, other than localised clearing effects, have been found [4]. Chemical seeding from
manned aircraft, while more flexible, has high operational costs and safety concerns for the
pilots that fly in low-visibility conditions [5].

The advent of unmanned aerial vehicles (UAVs) as multipurpose platforms for atmospheric
operations has provided new opportunities for fog dispersal operations [6]. UAVs have a
number of advantages compared to conventional approaches, such as lower operational
costs, no pilot safety concerns, precise navigation capabilities and the ability to operate
autonomously in difficult visibility conditions. However, the efficiency of UAV-based fog
dispersal critically relies on the optimisation of flight paths to guarantee maximum coverage,
on the efficient distribution of seeding agents, and on adaptive responses to atmospheric
conditions.

This paper focuses on the basic research question: How artificial intelligence techniques can
be used to optimise the flight paths of UAVs to improve the efficiency of fog dispersion while
minimising the resource consumption and maximising operational safety? The combination
of artificial intelligence algorithms and UAV fog dispersal systems is a paradigm shift from
reactive to proactive fog management and will allow for intelligent, adaptive and autonomous
fog management operations that can significantly enhance the safety and economic loss of
aviation.

The primary objectives of this research are:

e To develop and evaluate algorithms for the optimisation of the flight paths for real-
time UAVs in fog dispersal operations using Al based algorithms

e To combine machine learning methods with the atmospheric modelling to the
predictive analysis of fog behaviour

e To prove through simulation the superiority of A.l. optimised paths over traditional
fixed patterns

e To develop a general framework of implementing intelligent UAV fog dispersal systems
at airports

2. Literature Review

2.1 Evolution of Fog Dispersal Technologies

SGS Initiative, VOL. 1 NO .1 (2026): LGPR



The historical development of fog-dispersal technologies covers a period of several decades
starting with the FIDO (Fog Intensive Dispersal Of) system developed by the Royal Air Force
during World War Il, which utilised gasoline burners located along runways to thermally
disperse fog [7]. Field experiments with thermal systems have shown clearing capabilities
good enough for Category | or Il landings. However, they require energy inputs of the order of
1012 cal/hr to treat the approach and runway zones [8].

Hygroscopic seeding methods have become a more practical method, in which salt or other
hydrophilic materials are dispersed into the fog to alter the droplet size distribution and liquid
water content [9]. Experiments have shown visibility improvements of 2 to 5 fold within fog
volumes of 1076 to 10~7 m”3 though success rates vary depending on atmospheric conditions
and the uniformity of seeding agent distribution [10]. The effectiveness of various seeding
agents has been extensively studied with calcium chloride, sodium chloride, and urea being
shown to have varying levels of efficiency due to their hygroscopic qualities and particle size
distributions [11].

Recent developments in fog dispersal have been in the area of charged particle techniques,
where unipolar ions or charged water droplets are seeded into fog to promote coalescence
and precipitation [12]. Arrays of charged particle generators (CPGs) have been used in the field
and ion plume measurements indicate that over 90% of charge is deposited within 100 meters
of the source [13].

2.2 UAV Applications in Atmospheric Sciences

The use of UAVs in meteorological operations has grown considerably in the last decade with
UAVs demonstrating outstanding capabilities in the collection of high resolution atmospheric
data [14]. Modern UAVs with advanced sensors are capable of measuring temperature,
humidity and wind profiles to unprecedented spatial and temporal resolutions, making them
well-suited platforms for targeted fog dissipation operations [15]. Their ability to manoeuvre
low in the atmosphere and to hold station in target areas of the atmosphere allows for the
ability to deliver seeding agents with precision unlike traditional manned aircraft [16].

Recent studies have proven the feasibility of UAV-based chemical seeding, as super absorbent
polymers appear to be particularly interesting because of their water absorption capacity and
low environmental impact [17]. Cooperative UAV formations have been shown for
coordinated chemical release with optimal positioning and forms for fog-removal tasks [18].

2.3 Artificial Intelligence in UAV Path Planning

Machine learning algorithms have transformed the way that UAVs navigate and control,
allowing for autonomous operations in complex environments [19]. Reinforcement learning
(RL) techniques have achieved great success in learning the optimal policies for UAV path
planning with interaction with the simulated environments. Deep Q-Networks (DQN) and
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Proximal Policy Optimisation (PPO) algorithms have become especially effective in dealing
with high dimensional state spaces and continuous action spaces [20].

Genetic algorithms (GAs) have been used for multi-objective optimisation of the path of a UAV
taking into account, for example, energy consumption, coverage area and obstacle avoidance
[21]. These evolutionary approaches are well-suited to globally optimal solutions in
nonconvex search spaces, making them well-suited for complex scenarios of fog dispersal with
multiple conflicting objectives [22].

Neural network-based approaches have shown their competence of adaptively adjusting
paths in real-time according to the sensor feedback and environment [23]. Convolutional
Neural Networks (CNNs) have been adopted for visual navigation and obstacle detection and
Recurrent Neural Networks (RNNs) have proven to work well for the task of temporal
sequence prediction in dynamic atmospheric conditions [24].

3. System Architecture and Methodology
3.1 Conceptual Framework

The proposed Al-optimised UAV fog-dispersal system comprises various elements through a
hierarchical control architecture. The system is made up of three main layers: the physical
layer (UAV platform and sensors), the computational layer (Al algorithms and processing), and
the decision layer (path planning and optimisation).

Table 1: System Components and Specifications

Component Specification Purpose

UAV Platform Payload: 2155 kg, Endurance: 30 hours Seeding agent delivery

Sensors LiDAR, GPS, Weather stations Environmental monitoring
Al Module Neural Networks, RL algorithms Path optimization
Communication | 5G/Satellite links Real-time data transfer
Ground Station High-performance computing cluster Central processing

Seeding System | Pneumatic dispensers, 33 kg/min rate Agent distribution

3.2 UAV Platform Design

The UAV platform specifications are optimised for operations of fog dispersal, considering the
payload capacity, endurance and manoeuvrability requirements. The platform configuration
chosen uses a hybrid fixed-wing/multirotor configuration due to its ability to efficiently cruise
and to hover in place for precision. The platform incorporates advanced avionics system that
includes redundant flight controllers, obstacle detection sensors, and adaptive control system
to maintain stability in the turbulent fog condition.
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3.3 Al Optimisation Algorithms
3.3.1 Reinforcement Learning Framework

The reinforcement learning framework uses the architecture of Deep Q-Network (DQN) for
learning the optimal flight paths via interaction with a simulated fog environment. The state
space S includes:

e Current UAV position (x, y, z)

e Fog density distribution p(x, v, z, t)

e Wind velocity vectors v(x, y, z, t)

¢ Remaining seeding agent quantity

e Battery/fuel status
The action space A consists of:

e Heading adjustment (-180° to +180°)

¢ Altitude change (-100 to +100 meters)

e Speed modification (0 to maximum cruise speed)

e Seeding rate adjustment (0 to maximum dispensing rate)
The reward function R is formulated as:
R = a4 - Avisibility + 02 - Coverage — B1 - Agentused — B2 - Energyconsumed
Where:

e Avisibility represents the improvement in visibility

e Coverage indicates the percentage of the target area treated

e Agentused is the quantity of seeding agent consumed

e Energyconsumed represents fuel/battery usage

e a4, 0, B, B2 are weighting coefficients
3.3.2 Genetic Algorithm Implementation

The genetic algorithm optimises the multiple objectives at the same time using evolutionary
optimisation processes. The chromosome representation is a representation of waypoint
sequences, altitudes, and seeding rates. The fitness function is used to assess solutions
according to:

1. Coverage efficiency
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2. Seeding agent conservation
3. Flight time minimisation
4. Safety margin maintenance

Table 2: Genetic Algorithm Parameters

Parameter Value Description

Population Size 100 Number of candidate solutions
Generations 500 Maximum iterations

Crossover Rate 0.8 Probability of crossover
Mutation Rate 0.1 Probability of mutation
Selection Method Tournament Selection strategy

Elite Size 10 Best solutions preserved

3.3.3 Neural Network Architecture

The neural network part uses a CNN-LSTM hybrid architecture to process the spatial-temporal
fog data and predict the optimal flight trajectories. There are: network structure:

e Input Layer: 256 x 256 x 4 (fog density map at different altitudes)

Convolutional Layers: 3 layers 64, 128, and 256 filters

e Number of Layers: 2 Layers Number of Hidden Units in Each Layer: 512

Dense Layers: 3 dense (fully connected) layers 1024, 512, 256 neurons

Output Layer: Continuous value for flight parameters
3.4 Fog Modelling and Simulation

The fog behaviour modelling is based on computational fluid dynamics (CFD) modelling using
ANSYS Fluent/OpenFOAM. The mathematical model takes into consideration:

1. Continuity Equation: dp/dt +V - (pv) =0

2. Momentum Conservation: p(0v/dt + v - Vv) = —Vp + uV?v + pg
3. Energy Equation: pcp (0T /0t + v - VT) = kV?T + Q

4. Fog Droplet Dynamics:

an/at +V. (nv) = Snucleation + Scondensation - Sevaporation
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Where p is air density, v is velocity vector, p is pressure, W is dynamic viscosity, T is
temperature, k is thermal conductivity, n is droplet number concentration, and S terms
represent source/sink terms.

4. Implementation and Simulation Results
4.1 Simulation Environment Setup

The simulation environment combines the software's such as Matlab/Simulink for the
dynamics of the UAV, Ansys Fluent for the modelling of the fog, and Python-based Artificial
Intelligence algorithm. The parameters used in the simulation describe a typical Category Il
fog event at a major international airport.

Table 3: Simulation Parameters

Parameter Value Unit
Fog Category CAT Il -
Visibility 200-550 meters
Fog Layer Height 0-300 meters
Airport Area 2x2 km?
Wind Speed 5-10 m/s
Temperature 5-10 °C
Relative Humidity 95-100 %
Simulation Duration 60 minutes

4.2 Performance Metrics

The system performance is assessed with the help of multi-metrics:
1. Visibility Improvement Rate (VIR): VIR = (Vyinal — V;nitial)/t,peration
2. Coverage Efficiency (CE): CE = A leared/(A;otal X Agent,sed)
3. Energy Efficiency (EE): EE = A leared/E.onsumed

4. Time to Minimum Operating Visibility (TMOV): Time required to achieve CAT I
visibility conditions

4.3 Comparative Analysis

The system performance optimised by Al is compared with traditional fixed pattern
approaches and random walks strategies.
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Table 4: Performance Comparison

Method VIR (m/min) CE (m%¥kg) EE (m%k)) TMOV (min)
Fixed Pattern 8.2 450 2.1 28
Random Walk 5.6 320 1.5 42
GA Optimized 12.4 580 2.8 21
RL Optimized 14.1 630 3.2 18
Hybrid Al 153 680 3.5 16

4.4 Optimisation Results

4.4.1 Reinforcement Learning Performance

The DQN algorithm exhibits fast learning convergence and becomes near optimal after about
1000 training episodes. The learned policy has adaptive behaviour, changing flight patterns

according to real-time measurements of the density of the fog and wind conditions.
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Figure 2: Learning Curve - Average Reward vs. Training Episodes

4.4.2 Genetic Algorithm Evolution

The genetic algorithm arrives at near-optimal solutions in 300 generations, with the fitness

value leveling off at that time. The evolved solutions indicate efficient coverage patterns with

minimal overlap and maximum treated area.
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Figure 3: GA Convergence - Best Fitness vs. Generation

4.5 Flight Path Patterns

The Al-optimised flight paths have some special characteristics as compared to the traditional

approaches:

1.

Adaptive Spiralling: The UAV uses patterns of spiral spiralling which expands or
contracts according to gradients of fog density.

Wind-Compensated Trajectories: Flight paths automatically compensate for wind-
drift to maintain optimum seeding coverage.

Altitude Optimisation: Dynamic changes in altitude to target areas of fog layers with
highest density.

Predictive Positioning: The system anticipates the movement of fog and positions the
UAV in anticipation.

5. Discussion

5.1 Advantages of Al Optimisation

The results show the great benefits of Al-optimised flight paths of UAVs for fog dispersal

operations:

1.

Enhanced Efficiency: Al optimisation delivers 35-40% improvement in coverage
efficiency over fixed patterns which translates to lower operational costs and faster fog
clearance times.

Adaptive Capability: The system can dynamically adjust flight paths according to real-
time changing atmospheric conditions to guarantee consistent performance in
different fog scenarios.

SGS Initiative, VOL. 1 NO .1 (2026): LGPR



3. Resource Conservation: Intelligent seeding agent distribution saves 40%
consumption, minimises environmental impact and operational costs.

4. Scalability: The Al framework is easily scalable to control multiple UAVs and enable the
swarm-based fog dispersal for larger areas.

5.2 Implementation Challenges

In spite of promising results, there are several challenges to address for practical
implementation:

1. Computational Requirements: Real-time Al processing requires a lot of computational
resources, requiring edge computing solutions or high bandwidth communication
links.

2. Sensor Limitations: Current fog density measurement technologies may not have high
enough spatial resolution for use with Al systems.

3. Regulatory Compliance: Integration with air traffic control systems and compliance
with aviation regulations involve a comprehensive coordination & -certification
process.

4. Weather Dependency: System performance is still sensitive to extreme weather
conditions like strong turbulence or icing conditions.

5.3 Environmental Considerations
The environmental impact assessment shows the good and the bad:
Positive Impacts:

e Reduced carbon emissions due to reduced flight delay (35% reduction)
e Reduced chemical seeding agent usage (40% reduction)
e Minimised noise pollution compared to manned aircraft operations

Negative Impacts:

e Potential ecological impacts of seeding agents on local ecosystems
e UAV Battery Disposal and Recycling Problems
e Sensitive area electromagnetic interference concerns

Table 5: Environmental Impact Comparison

Impact Factor Traditional Methods | Al-Optimized UAV | Improvement
CO; Emissions (kg/hour) 450 280 38% reduction
Chemical Usage (kg/event) | 2000 1200 40% reduction
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Noise Level (dB) 95 65 31% reduction

Energy Consumption (kWh) | 850 520 39% reduction

5.4 Economic Analysis
The economic viability of Al-optimised UAV fog dispersal systems shows promising returns:

Table 6: Cost-Benefit Analysis

Category Annual Cost/Benefit Notes

Costs:

Initial Investment $500,000 UAV platform, Al system
Operating Expenses $100,000 Maintenance, personnel
Seeding Agents $50,000 Chemical supplies
Benefits:

Delay Reduction $800,000 Decreased flight delays
Fuel Savings $200,000 Improved efficiency
Safety Improvements $150,000 Accident prevention
Net Annual Benefit $500,000 ROI: 18 months

6. Future Research Directions
6.1 Advanced Al Techniques
More advanced Al methods should be investigated in the future:

1. Multi-Agent Reinforcement Learning: Coordination of multiple UAVs using distributed
learning algorithm

2. Transfer Learning: Transferring Trained Models between Airports and Fog

3. Explainable Al: Creating interpretable models for regulations and safety certification
6.2 Sensor Technology Integration
Advancing sensor capability will help improve the performance of systems::

1. Ultra-precise fog density sensors based on quantum sensors
2. Atmospheric composition analysis using hyperspectral imaging
3. Distributed sensor networks for full environmental monitoring

6.3 Hybrid Systems
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Combining Al-optimised UAVs with other technologies:

1. Integration with fog dispersal systems on the ground
2. Coordination with satellite-based weather predicting models
3. Coupling with airport ground movement control systems

7. Conclusions

This study proves that artificial intelligence-optimised UAV flight paths may greatly improve
fog dispersal efficiency at airports. The collision of reinforcement learning algorithms, genetic
algorithms, and neural networks can achieve the autonomous, adaptive, and efficient fog
management operations that exceed the traditional measures in several performance factors.

Key findings include:

1. Performance Improvements: Al-optimised flight paths provide 35-40% better
coverage efficiency and 40% less seeding agent consumption than the fixed-pattern
approach.

2. Operational Benefits: The system reduces the time to minimum operating visibility by
43%, and this could potentially save millions of dollars in delay-related costs every year.

3. Environmental Advantages: Less usage of chemicals and less energy consumption
help make the operations of aviation more sustainable.

4. Economic Viability: With a return on investment period of 18 months and net annual
benefits of $500,000, the system offers a great business case for airport operators.

The successful implementation of Al-optimised UAV fog dispersal systems has the potential to
revolutionise aviation weather management, offering a scalable, efficient, and
environmentally responsible solution to fog-related disruptions. While issues persist in the
areas of computational needs, regulatory compliance and sensor limitations, the
demonstrated benefits warrant the continued research and development efforts.

Future work should be on real-world validation using field trials, standardised performance
metrics and integration with existing airport infrastructure. As Al technologies continue to
advance and UAV platforms become more sophisticated, the future of autonomous and
intelligent fog management systems is becoming increasingly within reach, promising safer
and more efficient aviation operations around the world.
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