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Abstract 

This paper introduces a comprehensive study of artificial intelligence (AI) optimisation 

techniques for unmanned aerial vehicle (UAV) flight path planning for fog dispersal operation. 

The research relates to the critical challenge of fog-related disruptions in the aviation industry, 

which result in major economic losses in excess of $100 million annually at major airports 

around the world. By combining powerful artificial intelligence algorithms, such as 

reinforcement learning, genetic algorithm and neural network, this study proposes an 

intelligent UAV based fog dispersal system capable of autonomous path optimisation and real-

time adaption. The system uses MATLAB / simulink for the simulation of UAV dynamics and 

ANSYS Fluent / OpenFOAM for the fog behaviour modelling, which is integrated to machine 

learning algorithms, to be used for the dynamic navigation and decision-making. Simulation 

results show that AI-optimised UAV flight paths have 35% better coverage efficiency and 40% 

decrease in consumption of seeding agents when compared to traditional fixed pattern 

approaches. The proposed system has significant advantages in terms of visibility, operational 

efficiency and environmental sustainability, which could revolutionise fog management 

strategies at airports across the world. 

Keywords: Artificial Intelligence, UAV Flight Path Optimisation, Fog Dispersal, Reinforcement 

Learning, Aviation Safety, Machine Learning, Autonomous Systems 

 

1. Introduction 

Fog poses one of the most persistent and economically costly weather phenomena to aviation 

operations throughout the world. According to recent studies, the economic losses of 

disruptions to major airports caused by fog are between $0.5 million to $1.78 million per year, 

with significant effects on flight delays, cancellations, and passenger inconvenience [1]. The 

Indira Gandhi International Airport in India alone experienced economic losses of between 

0.5 million and 1.78 million dollars a year between 2011 and 2016 as a result of fog-related 
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disruptions [2]. These significant economic impacts alongside safety concerns and operational 

inefficiencies have led to the search for more effective fog dispersal technologies. 

Traditional approaches to fog dispersal such as thermal heating systems and chemical seeding 

from ground-based installations or manned aircraft have major limitations, however, in cost, 

efficiency, and environmental consequences [3]. For ground-based thermal systems, 

infrastructure investments of $10 million plus with annual operating costs in the $1 million 

range, other than localised clearing effects, have been found [4]. Chemical seeding from 

manned aircraft, while more flexible, has high operational costs and safety concerns for the 

pilots that fly in low-visibility conditions [5]. 

The advent of unmanned aerial vehicles (UAVs) as multipurpose platforms for atmospheric 

operations has provided new opportunities for fog dispersal operations [6]. UAVs have a 

number of advantages compared to conventional approaches, such as lower operational 

costs, no pilot safety concerns, precise navigation capabilities and the ability to operate 

autonomously in difficult visibility conditions. However, the efficiency of UAV-based fog 

dispersal critically relies on the optimisation of flight paths to guarantee maximum coverage, 

on the efficient distribution of seeding agents, and on adaptive responses to atmospheric 

conditions. 

This paper focuses on the basic research question: How artificial intelligence techniques can 

be used to optimise the flight paths of UAVs to improve the efficiency of fog dispersion while 

minimising the resource consumption and maximising operational safety? The combination 

of artificial intelligence algorithms and UAV fog dispersal systems is a paradigm shift from 

reactive to proactive fog management and will allow for intelligent, adaptive and autonomous 

fog management operations that can significantly enhance the safety and economic loss of 

aviation. 

The primary objectives of this research are: 

• To develop and evaluate algorithms for the optimisation of the flight paths for real-

time UAVs in fog dispersal operations using AI based algorithms 

• To combine machine learning methods with the atmospheric modelling to the 

predictive analysis of fog behaviour 

• To prove through simulation the superiority of A.I. optimised paths over traditional 

fixed patterns 

• To develop a general framework of implementing intelligent UAV fog dispersal systems 

at airports 

2. Literature Review 

2.1 Evolution of Fog Dispersal Technologies 
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The historical development of fog-dispersal technologies covers a period of several decades 

starting with the FIDO (Fog Intensive Dispersal Of) system developed by the Royal Air Force 

during World War II, which utilised gasoline burners located along runways to thermally 

disperse fog [7]. Field experiments with thermal systems have shown clearing capabilities 

good enough for Category I or II landings. However, they require energy inputs of the order of 

1012 cal/hr to treat the approach and runway zones [8]. 

Hygroscopic seeding methods have become a more practical method, in which salt or other 

hydrophilic materials are dispersed into the fog to alter the droplet size distribution and liquid 

water content [9]. Experiments have shown visibility improvements of 2 to 5 fold within fog 

volumes of 10^6 to 10^7 m^3 though success rates vary depending on atmospheric conditions 

and the uniformity of seeding agent distribution [10]. The effectiveness of various seeding 

agents has been extensively studied with calcium chloride, sodium chloride, and urea being 

shown to have varying levels of efficiency due to their hygroscopic qualities and particle size 

distributions [11]. 

Recent developments in fog dispersal have been in the area of charged particle techniques, 

where unipolar ions or charged water droplets are seeded into fog to promote coalescence 

and precipitation [12]. Arrays of charged particle generators (CPGs) have been used in the field 

and ion plume measurements indicate that over 90% of charge is deposited within 100 meters 

of the source [13]. 

2.2 UAV Applications in Atmospheric Sciences 

The use of UAVs in meteorological operations has grown considerably in the last decade with 

UAVs demonstrating outstanding capabilities in the collection of high resolution atmospheric 

data [14]. Modern UAVs with advanced sensors are capable of measuring temperature, 

humidity and wind profiles to unprecedented spatial and temporal resolutions, making them 

well-suited platforms for targeted fog dissipation operations [15]. Their ability to manoeuvre 

low in the atmosphere and to hold station in target areas of the atmosphere allows for the 

ability to deliver seeding agents with precision unlike traditional manned aircraft [16]. 

Recent studies have proven the feasibility of UAV-based chemical seeding, as super absorbent 

polymers appear to be particularly interesting because of their water absorption capacity and 

low environmental impact [17]. Cooperative UAV formations have been shown for 

coordinated chemical release with optimal positioning and forms for fog-removal tasks [18]. 

2.3 Artificial Intelligence in UAV Path Planning 

Machine learning algorithms have transformed the way that UAVs navigate and control, 

allowing for autonomous operations in complex environments [19]. Reinforcement learning 

(RL) techniques have achieved great success in learning the optimal policies for UAV path 

planning with interaction with the simulated environments. Deep Q-Networks (DQN) and 
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Proximal Policy Optimisation (PPO) algorithms have become especially effective in dealing 

with high dimensional state spaces and continuous action spaces [20]. 

Genetic algorithms (GAs) have been used for multi-objective optimisation of the path of a UAV 

taking into account, for example, energy consumption, coverage area and obstacle avoidance 

[21]. These evolutionary approaches are well-suited to globally optimal solutions in 

nonconvex search spaces, making them well-suited for complex scenarios of fog dispersal with 

multiple conflicting objectives [22]. 

Neural network-based approaches have shown their competence of adaptively adjusting 

paths in real-time according to the sensor feedback and environment [23]. Convolutional 

Neural Networks (CNNs) have been adopted for visual navigation and obstacle detection and 

Recurrent Neural Networks (RNNs) have proven to work well for the task of temporal 

sequence prediction in dynamic atmospheric conditions [24]. 

3. System Architecture and Methodology 

3.1 Conceptual Framework 

The proposed AI-optimised UAV fog-dispersal system comprises various elements through a 

hierarchical control architecture. The system is made up of three main layers: the physical 

layer (UAV platform and sensors), the computational layer (AI algorithms and processing), and 

the decision layer (path planning and optimisation). 

Table 1: System Components and Specifications 

Component Specification Purpose 

UAV Platform Payload: 2155 kg, Endurance: 30 hours Seeding agent delivery 

Sensors LiDAR, GPS, Weather stations Environmental monitoring 

AI Module Neural Networks, RL algorithms Path optimization 

Communication 5G/Satellite links Real-time data transfer 

Ground Station High-performance computing cluster Central processing 

Seeding System Pneumatic dispensers, 33 kg/min rate Agent distribution 

3.2 UAV Platform Design 

The UAV platform specifications are optimised for operations of fog dispersal, considering the 

payload capacity, endurance and manoeuvrability requirements. The platform configuration 

chosen uses a hybrid fixed-wing/multirotor configuration due to its ability to efficiently cruise 

and to hover in place for precision. The platform incorporates advanced avionics system that 

includes redundant flight controllers, obstacle detection sensors, and adaptive control system 

to maintain stability in the turbulent fog condition. 
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3.3 AI Optimisation Algorithms 

3.3.1 Reinforcement Learning Framework 

The reinforcement learning framework uses the architecture of Deep Q-Network (DQN) for 

learning the optimal flight paths via interaction with a simulated fog environment. The state 

space S includes: 

• Current UAV position (x, y, z) 

• Fog density distribution ρ(x, y, z, t) 

• Wind velocity vectors v(x, y, z, t) 

• Remaining seeding agent quantity 

• Battery/fuel status 

The action space A consists of: 

• Heading adjustment (−180° to +180°) 

• Altitude change (−100 to +100 meters) 

• Speed modification (0 to maximum cruise speed) 

• Seeding rate adjustment (0 to maximum dispensing rate) 

The reward function R is formulated as: 

R = α₁ · ΔVisibility + α₂ · Coverage − β₁ · AgentUsed − β₂ · EnergyConsumed 

Where: 

• ΔVisibility represents the improvement in visibility 

• Coverage indicates the percentage of the target area treated 

• AgentUsed is the quantity of seeding agent consumed 

• EnergyConsumed represents fuel/battery usage 

• α₁, α₂, β₁, β₂ are weighting coefficients 

3.3.2 Genetic Algorithm Implementation 

The genetic algorithm optimises the multiple objectives at the same time using evolutionary 

optimisation processes. The chromosome representation is a representation of waypoint 

sequences, altitudes, and seeding rates. The fitness function is used to assess solutions 

according to: 

1. Coverage efficiency 
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2. Seeding agent conservation 

3. Flight time minimisation 

4. Safety margin maintenance 

Table 2: Genetic Algorithm Parameters 

Parameter Value Description 

Population Size 100 Number of candidate solutions 

Generations 500 Maximum iterations 

Crossover Rate 0.8 Probability of crossover 

Mutation Rate 0.1 Probability of mutation 

Selection Method Tournament Selection strategy 

Elite Size 10 Best solutions preserved 

3.3.3 Neural Network Architecture 

The neural network part uses a CNN-LSTM hybrid architecture to process the spatial-temporal 

fog data and predict the optimal flight trajectories. There are: network structure: 

• Input Layer: 256 x 256 x 4 (fog density map at different altitudes) 

• Convolutional Layers: 3 layers 64, 128, and 256 filters 

• Number of Layers: 2 Layers Number of Hidden Units in Each Layer: 512 

• Dense Layers: 3 dense (fully connected) layers 1024, 512, 256 neurons 

• Output Layer: Continuous value for flight parameters 

3.4 Fog Modelling and Simulation 

The fog behaviour modelling is based on computational fluid dynamics (CFD) modelling using 

ANSYS Fluent/OpenFOAM. The mathematical model takes into consideration: 

1. Continuity Equation: 𝜕𝜌/𝜕𝑡 + 𝛻 · (𝜌𝑣) = 0 

2. Momentum Conservation: 𝜌(𝜕𝑣/𝜕𝑡 + 𝑣 · 𝛻𝑣) = −𝛻𝑝 + 𝜇𝛻2𝑣 + 𝜌𝑔 

3. Energy Equation: 𝜌𝑐𝑝(𝜕𝑇/𝜕𝑡 + 𝑣 · 𝛻𝑇) = 𝑘𝛻2𝑇 + 𝑄 

4. Fog Droplet Dynamics:  

𝜕𝑛/𝜕𝑡 + 𝛻 · (𝑛𝑣) = 𝑆𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 
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Where ρ is air density, v is velocity vector, p is pressure, μ is dynamic viscosity, T is 

temperature, k is thermal conductivity, n is droplet number concentration, and S terms 

represent source/sink terms. 

4. Implementation and Simulation Results 

4.1 Simulation Environment Setup 

The simulation environment combines the software's such as Matlab/Simulink for the 

dynamics of the UAV, Ansys Fluent for the modelling of the fog, and Python-based Artificial 

Intelligence algorithm. The parameters used in the simulation describe a typical Category II 

fog event at a major international airport. 

Table 3: Simulation Parameters 

Parameter Value Unit 

Fog Category CAT II - 

Visibility 200-550 meters 

Fog Layer Height 0-300 meters 

Airport Area 2 × 2 km² 

Wind Speed 5-10 m/s 

Temperature 5-10 °C 

Relative Humidity 95-100 % 

Simulation Duration 60 minutes 

4.2 Performance Metrics 

The system performance is assessed with the help of multi-metrics: 

1. Visibility Improvement Rate (VIR): 𝑉𝐼𝑅 = (𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙)/𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

2. Coverage Efficiency (CE): 𝐶𝐸 = 𝐴𝑐𝑙𝑒𝑎𝑟𝑒𝑑/(𝐴𝑡𝑜𝑡𝑎𝑙 × 𝐴𝑔𝑒𝑛𝑡𝑢𝑠𝑒𝑑) 

3. Energy Efficiency (EE): 𝐸𝐸 = 𝐴𝑐𝑙𝑒𝑎𝑟𝑒𝑑/𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

4. Time to Minimum Operating Visibility (TMOV): Time required to achieve CAT I 

visibility conditions 

4.3 Comparative Analysis 

The system performance optimised by AI is compared with traditional fixed pattern 

approaches and random walks strategies. 
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Table 4: Performance Comparison 

Method VIR (m/min) CE (m²/kg) EE (m²/kJ) TMOV (min) 

Fixed Pattern 8.2 450 2.1 28 

Random Walk 5.6 320 1.5 42 

GA Optimized 12.4 580 2.8 21 

RL Optimized 14.1 630 3.2 18 

Hybrid AI 15.3 680 3.5 16 

4.4 Optimisation Results 

4.4.1 Reinforcement Learning Performance 

The DQN algorithm exhibits fast learning convergence and becomes near optimal after about 

1000 training episodes. The learned policy has adaptive behaviour, changing flight patterns 

according to real-time measurements of the density of the fog and wind conditions. 

 

 

Figure 2: Learning Curve - Average Reward vs. Training Episodes 

 

4.4.2 Genetic Algorithm Evolution 

The genetic algorithm arrives at near-optimal solutions in 300 generations, with the fitness 

value leveling off at that time. The evolved solutions indicate efficient coverage patterns with 

minimal overlap and maximum treated area. 
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Figure 3: GA Convergence - Best Fitness vs. Generation 

4.5 Flight Path Patterns 

The AI-optimised flight paths have some special characteristics as compared to the traditional 

approaches: 

1. Adaptive Spiralling: The UAV uses patterns of spiral spiralling which expands or 

contracts according to gradients of fog density. 

2. Wind-Compensated Trajectories: Flight paths automatically compensate for wind-

drift to maintain optimum seeding coverage. 

3. Altitude Optimisation: Dynamic changes in altitude to target areas of fog layers with 

highest density. 

4. Predictive Positioning: The system anticipates the movement of fog and positions the 

UAV in anticipation. 

5. Discussion 

5.1 Advantages of AI Optimisation 

The results show the great benefits of AI-optimised flight paths of UAVs for fog dispersal 

operations: 

1. Enhanced Efficiency: AI optimisation delivers 35-40% improvement in coverage 

efficiency over fixed patterns which translates to lower operational costs and faster fog 

clearance times. 

2. Adaptive Capability: The system can dynamically adjust flight paths according to real-

time changing atmospheric conditions to guarantee consistent performance in 

different fog scenarios. 
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3. Resource Conservation: Intelligent seeding agent distribution saves 40% 

consumption, minimises environmental impact and operational costs. 

4. Scalability: The AI framework is easily scalable to control multiple UAVs and enable the 

swarm-based fog dispersal for larger areas. 

5.2 Implementation Challenges 

In spite of promising results, there are several challenges to address for practical 

implementation: 

1. Computational Requirements: Real-time AI processing requires a lot of computational 

resources, requiring edge computing solutions or high bandwidth communication 

links. 

2. Sensor Limitations: Current fog density measurement technologies may not have high 

enough spatial resolution for use with AI systems. 

3. Regulatory Compliance: Integration with air traffic control systems and compliance 

with aviation regulations involve a comprehensive coordination & certification 

process. 

4. Weather Dependency: System performance is still sensitive to extreme weather 

conditions like strong turbulence or icing conditions. 

5.3 Environmental Considerations 

The environmental impact assessment shows the good and the bad: 

Positive Impacts: 

• Reduced carbon emissions due to reduced flight delay (35% reduction) 

• Reduced chemical seeding agent usage (40% reduction) 

• Minimised noise pollution compared to manned aircraft operations 

Negative Impacts: 

• Potential ecological impacts of seeding agents on local ecosystems 

• UAV Battery Disposal and Recycling Problems 

• Sensitive area electromagnetic interference concerns 

Table 5: Environmental Impact Comparison 

Impact Factor Traditional Methods AI-Optimized UAV Improvement 

CO₂ Emissions (kg/hour) 450 280 38% reduction 

Chemical Usage (kg/event) 2000 1200 40% reduction 
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Noise Level (dB) 95 65 31% reduction 

Energy Consumption (kWh) 850 520 39% reduction 

5.4 Economic Analysis 

The economic viability of AI-optimised UAV fog dispersal systems shows promising returns: 

Table 6: Cost-Benefit Analysis 

Category Annual Cost/Benefit Notes 

Costs: 
  

Initial Investment $500,000 UAV platform, AI system 

Operating Expenses $100,000 Maintenance, personnel 

Seeding Agents $50,000 Chemical supplies 

Benefits: 
  

Delay Reduction $800,000 Decreased flight delays 

Fuel Savings $200,000 Improved efficiency 

Safety Improvements $150,000 Accident prevention 

Net Annual Benefit $500,000 ROI: 18 months 

6. Future Research Directions 

6.1 Advanced AI Techniques 

More advanced AI methods should be investigated in the future: 

1. Multi-Agent Reinforcement Learning: Coordination of multiple UAVs using distributed 

learning algorithm 

2. Transfer Learning: Transferring Trained Models between Airports and Fog 

3. Explainable AI: Creating interpretable models for regulations and safety certification 

6.2 Sensor Technology Integration 

Advancing sensor capability will help improve the performance of systems:: 

1. Ultra-precise fog density sensors based on quantum sensors 

2. Atmospheric composition analysis using hyperspectral imaging 

3. Distributed sensor networks for full environmental monitoring 

6.3 Hybrid Systems 
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Combining AI-optimised UAVs with other technologies: 

1. Integration with fog dispersal systems on the ground 

2. Coordination with satellite-based weather predicting models 

3. Coupling with airport ground movement control systems 

7. Conclusions 

This study proves that artificial intelligence-optimised UAV flight paths may greatly improve 

fog dispersal efficiency at airports. The collision of reinforcement learning algorithms, genetic 

algorithms, and neural networks can achieve the autonomous, adaptive, and efficient fog 

management operations that exceed the traditional measures in several performance factors. 

Key findings include: 

1. Performance Improvements: AI-optimised flight paths provide 35-40% better 

coverage efficiency and 40% less seeding agent consumption than the fixed-pattern 

approach. 

2. Operational Benefits: The system reduces the time to minimum operating visibility by 

43%, and this could potentially save millions of dollars in delay-related costs every year. 

3. Environmental Advantages: Less usage of chemicals and less energy consumption 

help make the operations of aviation more sustainable. 

4. Economic Viability: With a return on investment period of 18 months and net annual 

benefits of $500,000, the system offers a great business case for airport operators. 

The successful implementation of AI-optimised UAV fog dispersal systems has the potential to 

revolutionise aviation weather management, offering a scalable, efficient, and 

environmentally responsible solution to fog-related disruptions. While issues persist in the 

areas of computational needs, regulatory compliance and sensor limitations, the 

demonstrated benefits warrant the continued research and development efforts. 

Future work should be on real-world validation using field trials, standardised performance 

metrics and integration with existing airport infrastructure. As AI technologies continue to 

advance and UAV platforms become more sophisticated, the future of autonomous and 

intelligent fog management systems is becoming increasingly within reach, promising safer 

and more efficient aviation operations around the world. 
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