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Abstract: Road marking identification is a highly essential part of intelligent transportation systems and 

autonomous vehicles, as it directly influences route guidance and road safety. However, due to varying light 

sources, weather conditions, faded paint, and complex road geometry, their identification is a challenging task for 

computers and machines to perform precise analysis and deduction. This work conducts a comparative analysis of 

some new YOLO-based techniques for tracking and identifying objects, YOLOv8, YOLOv9, YOLOv10, and YOLOv11, 

on a road marking identification dataset containing varied real-time situations on roads. The experiment on all 

techniques is conducted under similar settings for consistent analysis and comparison. The performance 

evaluation criteria for assessing their efficiency include precision, recall, F1-score, mAP value with a 0.5 IoU 

requirement, and accuracy. The accuracy for road marking identification reaches 93% with YOLOv11, which has 

notably superseded its predecessors by significant margins, thanks to improvements in architecture, the use of 

anchor-free techniques, new learning methods, and end-to-end testing and analysis for enhanced accuracy and 

precision. This analysis clearly predicts that YOLO-based techniques, especially YOLOv11, are exceptionally efficient 

and well-suited for real-time, precise road marking identification in advanced driver assistance systems, 

automated vehicles, and other road vehicles, thereby enhancing road safety and efficiency. 
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Introduction 
 

Efficient and well-maintained transportation infrastructure is cardinal to economic development, road 

safety, and seamless mobility. Among its critical components, lane markings paint the roads for drivers and 

support advanced driver-assistance systems and autonomous vehicles. However, lane markings deteriorate over 

time due to environmental exposure, heavy traffic, inconsistent maintenance practices, and poor lighting [1]. 

These factors degrade lane visibility and reliability to a great extent, hence challenge the effective regulation of 

traffic flow and intelligent transportation systems. Traditional lane inspection methods, mostly based on manual 

surveys or simple white-line detection, are labor-intensive, time-consuming, and prone to human error; as a result, 

they cannot meet modern transportation network demands at scale and in real time.  

Most traditional lane detection methods, which rely solely on visible lane markings, fail in real-world 

scenarios where markings are faded, occluded, or even completely missing [2]. In this respect, a vehicle-clustering-

based lane detection strategy using mobile cameras has demonstrated improved performance in developing 

regions with dense, heterogeneous traffic conditions, where white-line detection is conventionally unreliable [3]. 

This point underscores the need for alternative lane-estimation strategies beyond explicit road markings. A 
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multitask learning architecture that coupled vehicle detection, tracking, and lane-change violation detection using 

the Fast YOLO framework, highlighting synergy between lane detection and automated traffic enforcement [4]. 

Monocular 3D lane detection is one of the most promising research directions for enhancing spatial 

understanding. As Ma et al. have noted, lane estimation in 3D provides more informative geometric cues, such as 

lane elevation, curvature, and topology, which are crucial for autonomous navigation. However, even with these 

merits, monocular 3D lane detection faces many challenges due to depth ambiguity, scene complexity, and 

robustness under diverse road and environmental conditions [5]. Recent advances in deep learning have 

dramatically enhanced lane detection performance in degraded visual conditions. A region-based CNN approach 

that detected lane boundaries on noisy, low-contrast, and deteriorated road surfaces using region proposals and 

discriminative feature extraction [6]. Complementary to vision-based approaches, IR-based lane-line detection 

systems, as explored by [7], offer enhanced robustness in low-light and other unfavorable weather conditions, 

enabling reliable lane monitoring from both autonomous and non-autonomous vehicles. 

In real driving scenarios, it often benefits from temporal information across frames [8]. To handle 

problems such as occlusion, motion blur, and sudden illumination changes, PHNet, an online video lane-detection 

framework that uses adaptive routing and cross-frame attention mechanisms to recover missing lane information 

via temporal context [9]. On the other hand, for actual implementations, there is an increasing interest in 

embedded real-time solutions. A framework using YOLOv8 that integrates lane and vehicle detection to achieve 

robust performance in challenging lighting, shadowing, and partial occlusion conditions, suitable for ADAS 

applications in real time [10], [11]. Beyond lane structure identification, modern intelligent transportation systems 

require comprehensive scene understanding, integrating traffic violation detection, driver behavior analysis, and 

safety monitoring. Furthermore, a reinforcement learning-based approach for dynamic lane-change intention 

recognition using BiLSTM networks, attention mechanisms, and conditional random fields, achieves early 

prediction of potentially dangerous maneuvers in mixed-traffic environments [12]. Regarding proactive safety 

assessment, the importance of near-miss detection due to lane deviations, unseen regions, and trajectory overlaps 

is demonstrated, and YOLO-based models are shown to improve hazard detection performance across varying 

video quality conditions significantly [13]. 

 

Related work 
 

The studies in the field of lane detection have progressed from manual methods in image processing to a 

combination of transformer-based methods and multimodal perception methods explicitly tailored to automated 

driving applications. The current trends in lane detection appear to be toward multi-granularity learning methods. 

The current methods in the field of lane detection must be robust across different conditions, such as shadows, 

high lighting, vehicle occlusion, poor road markings, and varying climatic and geographic conditions. A combined 

2D-3D Multi-Granularity Lane Attention framework, coined MGA, focusing on point, line, and channel levels by Dai 

et al. [14] improved shadow robustness, missing lane robustness, and slope robustness. To overcome the 

shortcomings of camera-based solutions, the SRS involving magnetic sensors introduced by Sun et al. [15] targeted 

multilane data capture under varying lighting and weather conditions [16]. The significantly lower error rate 

achieved by this embedded, solution-based approach underscores the efficiency and applicability of sensor fusion, 

even in the face of the shortcomings of a vision-based approach.  

Liu & Ling [17] optimized the efficiency of the model using the Sparse Lane Former, which is the fully 

sparse transformer pipeline for the detection of lanes and is the first fully sparse transformer pipeline for lane 

detection, using Lane-Aware Queries and sparse interactions that drastically reduced the computational time and 

simultaneously improved the continuity of detected lanes [18]. The lane detection was then further applied using 

the Virtual Witness system, which is a multi-camera deep learning system for lane detection, driver state 

estimation, and external event prediction for total safety [19].  The geometric view of lanes was then improved 
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using the Vision-Based Geometric Model (VBGM), which removed spurious edges by using rotational coordinate 

systems, a valuable technique for occluded and nighttime scenarios [20]. Recent advancements in deep learning 

include HGLFNet, proposed by Ding et al. [21], which leverages both global semantic feature extraction and local 

refinement to improve thin and occluded lane markings. The global semantic feature extraction module adopts the 

large kernel convolution method to address long-range dependencies, and the fusion module bridges gaps in 

semantic feature values, integrating deep and shallow methods to improve accuracy. In this context, in addition to 

lane markers, danger-aware perception methods are also explored. 

A Hybrid Deep Learning model combining a CNN and a ConvLSTM to anticipate driver danger measures, 

using spatial and temporal features such as deviation and an untoward following distance, has been proposed by 

Sakthivel et al. [22] for hazard awareness using available lane features. When vehicles are moving at high speed on 

the highway, object detection is needed to avoid potholes [23] in images and videos [24] using computer vision 

[25]. A framework has been designed for disabled persons using mining techniques [26]. Whenever the driver feels 

stressed due to lack of sleep or is not feeling well, there is a chance of an accident, so to avoid that, detection is 

needed [27], [28], [29]. For that, facial indicators are also required for road safety [30] while travelling on public 

transport [31]. Along with runtime deployment, there has been work on real-time deployment as well.  

Mirdanies et al. [32] deployed Ultra Fast Lane Detection with Jetson Nano on an autonomous mobile 

robot, achieving speedups of up to 22x with TensorRT. The significance of rapid breakthroughs in lane detection 

has been noted in the existing literature. Bi et al. [33] have provided a comprehensive discussion of 2D and 3D lane 

detection methods, along with prominent issues and challenges, such as irregular lane markings, poor visibility, 

and the need for more general data and evaluation metrics. Whenever data is transformed from one system to 

another, it requires a novel clustering technique [34] and an ML framework for vehicle security [35]. For legal 

opinion, the data should be summarized using DL models [36], objects should be categorized from images [37], and 

encrypted features should be used for CBIR [38]. Shettar et al. [39] have noted that classical methods using image 

processing techniques with Gaussian and Canny edge detectors are effective on well-structured roads but are not 

sufficiently robust for realistic conditions. Zaidi et al. [40] have compared methods using gradient-based, 

thresholding, transformation, and CNN approaches, which are significant due to their greater adaptability and 

precision, particularly in low-visibility conditions. The combination of these works suggests that the community is 

increasingly interested in multimodal sensing, global-to-local fusion, sparse transformers, 3D geometric reasoning, 

and real-time operation on embedded hardware for lane detection. Each of these areas of research also 

contributes, in its own way, to the development of innovative, safety-oriented transport systems by addressing the 

challenges posed by contemporary road conditions and transport patterns. 

 

Methodology 
 

Objectives 

1. To analyze the effectiveness of recent YOLO architectures (YOLOv8, YOLOv9, YOLOv10, and YOLOv11) for 

automatic road marking detection under diverse real-world conditions. 

2. To identify the most effective YOLO variant for detecting thin, faded, and partially occluded road markings 

in intelligent transportation and autonomous driving applications. 

Dataset 

The Road Marking Detection Dataset is a collection of annotated road scene images designed to help 

detect and locate various road markings, including lane boundaries, dashed and solid lines, arrows, pedestrian 

crossings, stop lines, and directional symbols. The dataset captures real-world driving conditions using cameras 

mounted on forward-facing vehicles, ensuring practical relevance for intelligent transportation systems, ADAS, and 

autonomous driving applications. Illumination, weather, and road-surface conditions are highly variable: bright 
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daylight, low-light conditions, nighttime, shadows, glare, roads affected by rain, and partially occluded or worn-out 

markings. This variability makes the dataset particularly challenging and well-suited for evaluating the robustness 

of the detectors under real constraints. Scenes range from urban roads to highways, intersections, and residential 

areas, while accounting for camera viewpoints, road curvature, and traffic flow conditions. Ground-truth labels are 

provided for each image as bounding boxes or segmentation masks, depending on the task formulation. These 

annotations specify the spatial location and class of each road marking, enabling supervised learning for object 

detection or segmentation-based approaches. The dataset is usually divided into training, validation, and test 

subsets to ensure fair performance evaluation and prevent overfitting. 

Models Used 

Specifically, the innovation of YOLO (You Only Look Once) emerged as a solution to the inherent weakness 

of traditional approaches to object detection, which had broken the tasks of proposal, extraction, and classification 

into several steps. Joseph Redmon, along with other researchers, developed this approach in 2016, suggesting a 

new object detection method that treated object detection as a regression task from images to bounding boxes 

and class probabilities, implemented within a one-pass deep learning architecture. This new approach was born 

from the idea of real-time perception, where not only accuracy but also speed matters considerably, especially for 

real-time tasks such as self-driving automobiles, robots, or surveillance cameras. 
 

YOLOv8 

  YOLOv8 introduces a brand-new, fully anchor-free detector that does not rely on anchor boxes. It also 

features a decoupled head design, in which the classification and regression tasks are optimized separately, 

leading to faster convergence and better localization. Furthermore, YOLOv8 comes with the capability to handle a 

range of vision tasks, including object detection, instance segmentation, key point recognition, and image 

classification, within the same model, and thus YOLOv8 is highly versatile. 
 

YOLOv9 

  YOLOv9 primarily aims to enhance the learning speed and gradient information flow of deep models 

through the concept of Programmable Gradient Information (PGI). Using PGI enables the retention of critical 

information from features during backpropagation. Consequently, YOLOv9 has shown better training stability and 

performance in complex scenes with highly overlapping objects or ambiguous boundaries. 
 

YOLOv10 

  YOLOv10 offers a significant conceptual improvement over earlier versions by enabling complete end-to-

end object detection without the need for Non-Maximum Suppression. This is achieved through the continuous 

dual assignment method used by YOLOv10, which eliminates redundancy in predictions during training. This leads 

to lower latency and more accurate results. 

 

YOLOv11 

  YOLOv11 focuses on efficiency and edge-deployment readiness, proposing lightweight architectural 

improvements and new methods for feature interactions. It has been optimized to achieve highly optimal trade-

offs between accuracy and speed when processing intensive tasks on platforms such as GPUs for embedded 

devices or automotive chips. 

Although YOLOv8 provides a strong, flexible anchor-free architecture that supports multitasking, YOLOv9 

improves the learning method by retaining gradient information during training. YOLOv10 breaks from the 

established object detection paradigm by removing NMS and enabling end-to-end inference. YOLOv11 continues 

to build on previous breakthroughs to enhance efficiency and push the model towards suitability for deployment 

on edge devices and for real-time applications. These models, taken together, reveal the development of YOLO 
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through the following stages: architecture optimization (YOLOv8), learning method optimization (YOLOv9), 

inference optimization (YOLOv10), and deployment optimization (YOLOv11). 
 

ALGORITHM-1 

Step 1: Given an input RGB image I, the image is resized to a fixed resolution, and pixel values are normalized 

𝐼𝑛𝑜𝑟𝑚 =
𝐼

255
  𝑖 ∈ 𝑅𝐻 𝑥 𝑤 𝑥 3 

Step 2: A convolutional backbone network processes the normalized image to extract hierarchical feature (F) 

representations 

𝐹 = 𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (𝐼𝑛𝑜𝑟𝑚) 

Step 3: Feature maps obtained from different backbone stages are fused using a neck network to enhance scale 

aware representations 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝑁𝑒𝑐𝑘 (𝐹) 

Step 4: The fused feature maps are forwarded to the detection head to generate dense predictions 

ŷ = (𝑥, 𝑦, 𝑤, ℎ, 𝑐, 𝑃1, 𝑃2, … , 𝑃𝑘)  

where k is number of object classes, ŷ is an prediction vector, (x,y) is an bounding box centre 

coordinates, (w,h) is the width and height, c is the objectness confidence, 𝑃𝑥 is the class probability for 

class k. 

Step 5: Bounding box coordinates are decoded from network outputs as 

𝑥 = 𝜎 (𝑡𝑥) + 𝐶𝑥 , 𝑦 =  𝜎 (𝑡𝑦) + 𝐶𝑦 

w = exp(tw) , h = exp(th) 

where (Cx , Cy) denote grid-cell offsets, (𝑡𝑥, 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ) is the raw network outputs, 𝜎(, ) is the sigmoid 

activation function. This formulation follows an anchor-free design. 
Step 6:  An objectness confidence score (𝐶) is predicted to represent the likelihood of object presence 

𝐶 = 𝑃(𝑜𝑏𝑗𝑒𝑐𝑡)𝑥 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑔𝑡

 

where 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑔𝑡

 is the intersection over Union with ground truth. 

Step 7: Final class-wise confidence scores are computed as 

𝑆𝑐𝑜𝑟𝑒𝑘 = 𝐶 𝑥 𝑃𝑘, 𝐾 = 1,2, … . , 𝑘 

Step 8: During training, the network parameters are optimized using a composite loss function: 

𝐿𝑡𝑜𝑡𝑎𝑙 = λ𝑏𝑜𝑥𝐿𝑏𝑜𝑥 + λ𝑜𝑏𝑗𝐿𝑜𝑏𝑗 +  λ𝑐𝑙𝑠𝐿𝑐𝑙𝑠 

Where 𝐿𝑏𝑜𝑥  is the bounding box loss, 𝐿𝑜𝑏𝑗  is the objectness Loss, 𝐿𝑐𝑙𝑠 is the Classification loss and (λ𝑏𝑜𝑥, 

λ𝑜𝑏𝑗 , λ𝑐𝑙𝑠) is the Loss weights. 

Step 9: Overlapping detections are filtered using Non-Maximum Suppression (NMS) 

𝐼𝑜𝑈 =
| 𝐵𝑝𝑟𝑒𝑑 ∩ 𝐵𝑔𝑡|

| 𝐵𝑝𝑟𝑒𝑑 ∪ 𝐵𝑔𝑡|
 

Where 𝐵𝑝𝑟𝑒𝑑  is the predicted bounding box and 𝐵𝑔𝑡 is the ground thruth box. 

Step 10: The final detection output is represented as 

𝐷 = { ( 𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑙𝑎𝑠𝑠, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)}𝜋𝑟2 

 

While the overall YOLO detection pipeline remains unchanged, the evolution from YOLOv8 to YOLOv11 

introduces targeted modifications at specific algorithmic steps. YOLOv8 primarily refines Steps 5 (Bounding Box 

Decoding) and 8 (Loss Optimization) by adopting a fully anchor-free design with decoupled detection heads, 

resulting in improved localization accuracy and more stable training. YOLOv9 introduces its key change at Step 2 

(Feature Extraction), where the backbone architecture is redesigned to preserve gradient flow and information 

richness in deeper layers, while leaving the detection head and post-processing stages largely intact. YOLOv10 

significantly alters Step 9 (Post-Processing) by eliminating Non-Maximum Suppression and reformulating detection 

as an actual end-to-end optimization problem, thereby reducing inference latency and simplifying deployment. 

YOLOv11 further enhances Steps 3 (Feature Fusion) and 8 (Loss Optimization) to improve cross-scale interactions 

and generalization across diverse datasets, optionally retaining or optimizing NMS based on application 



 

SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

requirements. Thus, the progression from YOLOv8 to YOLOv11 reflects a systematic shift from architectural 

simplification to end-to-end efficiency and robustness, rather than a complete redesign of the YOLO algorithm. 

 

Result Analysis 
 

A comparison study was also conducted to analyse the efficiency of the proposed method by applying it 

to four recently introduced versions of YOLO: YOLOv8, YOLOv9, YOLOv10, and YOLOv11, and then evaluating it on 

the Road Marking Detection Dataset. The comparison was conducted to assess the effect of architectural 

improvements in YOLO versions on the efficiency of accurate identification of road markings across varying 

surroundings and illumination conditions. The parameters used to measure the efficiency of the mentioned YOLO 

versions are Precision, Recall, F1-score, Average Precision at 0.5 IoU (mAP@0.5), and Detection Accuracy. 

 

Table 1. Results Comparison 

Model Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

mAP@0.5 
(%) 

Accuracy (%) 

YOLOv8 89.6 87.9 88.7 90.8 90.2 

YOLOv9 90.8 89.4 90.1 91.9 91.4 

YOLOv10 92.1 90.6 91.3 92.6 92.0 

YOLOv11 93.4 92.1 92.7 93.8 92.9 

 

As shown in Table 1, detection accuracy increases from YOLOv8 to YOLOv11. YOLOv8 provides a 

competitive baseline for detecting prominent road markings; however, it slightly degrades at identifying thin and 

faded paint marks.  

  
(a) (b) 

Figure 1. Graph for the performance of the (a) Accuracy (b) Various Metrics 
 

The accuracy and recall of YOLOv9 are enhanced, indicating optimized and sound model training and the 

effective use of feature representations learned during training. The accuracy of marking detections is also 

improved in YOLOv10 by avoiding reliance on Non-Maximum Suppression methods that could lead to missed 

detections of multiple overlapping road markings. Among these deep models tested, YOLOv11 achieves the 

highest detection accuracy of approximately 93% due to its optimized feature interaction techniques and a highly 

lightweight model structure. 
 

Conclusion 

Road marking identification is an essential part of intelligent transportation systems and autonomous 

vehicles, as it directly influences route guidance and road safety. However, due to varying light sources, weather 

conditions, faded paint, and complex road geometry, their identification is a challenging task for computers and 

machines to perform precise analysis and deduction. This paper conducts a comparative analysis of some new 
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YOLO-based techniques for tracking and identifying objects, YOLOv8, YOLOv9, YOLOv10, and YOLOv11, on a road 

marking identification dataset containing varied real-time situations on roads. The experiment on all techniques is 

conducted under similar settings for consistent analysis and comparison. The performance evaluation criteria for 

assessing their efficiency include precision, recall, F1-score, mAP value with a 0.5 IoU requirement, and accuracy. 

The accuracy for road marking identification reaches 93% with YOLOv11, which has notably superseded its 

predecessors by noticeable margins, thanks to improvements in architecture, the use of anchor-free techniques, 

new learning techniques, and end-to-end testing and analysis for enhanced accuracy and precision. This analysis 

clearly predicts that YOLO-based techniques, especially YOLOv11, are exceptionally efficient and well-suited for 

real-time, precise road marking identification in advanced driver assistance systems, automated vehicles, and 

other road vehicles, thereby enhancing road safety and efficiency. 
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