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Abstract: Speckle is an inherent multiplicative noise in coherent imaging systems such as synthetic
aperture radar (SAR), and it reduces radiometric resolution, obscures weak scatterers, and degrades
downstream tasks (e.g., detection, segmentation, and classification). Over the last four decades,
despeckling has evolved from local statistical filters (e.g., Lee/Frost/Kuan families) to variational and
nonlocal approaches, and more recently to data-driven deep networks. Within this landscape, soft
computing—broadly covering fuzzy logic, neural computing, and evolutionary/swarm optimization—has
been increasingly used to address the central despeckling dilemma: suppress speckle while preserving
edges, textures, and small man-made targets. This review organizes soft computing techniques for SAR
despeckling into: (i) fuzzy and neuro-fuzzy filtering; (ii) neural and deep learning models (CNN,
autoencoders, GANs, and diffusion models); and (iii) evolutionary and swarm optimization used for
parameter tuning, transform-domain thresholding, and multi-objective decision making. Particular
empbhasis is placed on multi-objective formulations that jointly optimize PSNR and MSSIM/SSIM, yielding
Pareto-optimal trade-off solutions (e.g., MOPSO-based threshold selection). We summarize datasets,
evaluation metrics, and reproducibility concerns, and provide a comparative synthesis of strengths,
limitations, and research gaps. Finally, we outline actionable future directions, including self-supervised
despeckling on real SAR, objective-function design aligned with task performance, uncertainty
guantification, and standardized evaluation protocols.

Keywords: Synthetic aperture radar; speckle noise; despeckling; soft computing; fuzzy logic; deep
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Introduction

Synthetic aperture radar (SAR) provides all-weather, day-night Earth observation by exploiting coherent
microwave scattering. However, coherent processing produces granular speckle, commonly modeled as
multiplicative noise, which lowers visual interpretability and can bias quantitative analysis. Consequently,
despeckling remains a crucial pre-processing step for both human interpretation and automated pipelines
[1]. The SAR images are generally captured by any moving object such as satellite or plane displayed by
Figure 1. These SAR images are so much popular now a days due to its uses in different fields such as
agriculture, environment study, forestry and military surveillances etc. The SAR images are affected due
to its coherent nature and heavily affected by the granular noise infused during its capturing process. The
noise is known as multiplicative noise. There are several algorithms available for denoising of optical
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images but there are not so many algorithms available for removing speckle noise from the SAR images.
SAR image simulation can be divided into two categories during the electromagnetic scattering flow. The
first is a signal-level simulation that primarily focusses on electromagnetic scattering, while the second is
an image-level simulation that focusses on pre-existing or hypothetical distribution [2]. Classical
despeckling methods include local statistical filters (Lee, Frost, Kuan), diffusion models, and
transform-domain shrinkage. Although these approaches can suppress speckle, they often trade noise
removal against edge/texture preservation, and their performance is sensitive to hand-tuned parameters
and scene heterogeneity. In parallel, modern deep learning approaches have reported strong results, but
supervised training is challenged by the scarcity of truly noise-free SAR reference images and the
mismatch between synthetic and real speckle.
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Figure 1: Typical SAR despeckling capturing process [1].

Soft computing offers complementary tools for this problem. Fuzzy logic can encode expert knowledge
and local context via membership functions and rule bases; neural networks can learn nonlinear
despeckling mappings; and evolutionary/swarm methods can automatically tune parameters or losses,
including in multi-objective settings. Recent work has also explored self-supervised learning to reduce
reliance on clean targets and better adapt to real SAR speckle statistics. This review focuses on soft
computing techniques for SAR despeckling, with a special emphasis on multi-objective optimization (e.g.,
joint PSNR—MSSIM optimization) and optimization-driven parameter selection for transform-domain and
hybrid filters. We aim to provide: (i) a structured taxonomy, (ii) an overview of metrics and datasets, (iii)
a comparative synthesis of representative methods, and (iv) future research opportunities [3-6].
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Figure 2: Typical SAR despeckling workflow and its role in downstream interpretation tasks.
Figure 2 presents a sequential workflow for despeckling process of Synthetic Aperture Radar (SAR)

imagery. It begins at the stage of SAR data acquisition, in which coherent signal processing results in the.
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images formed under the influence of granular noise. This noise is represented then in a multiplicative
form speckle model, an explanation of the interaction between the actual backscatter and speckle
contents. In the second step, despeckling schemes, which make use of soft computing or mixed models
are used to authenticate noise reduction but important spatial and textual details are preserved. The
images are then refined and finally used as downstream tasks, such as change detection, land cover
classification, and image segmentation, assisting in sound and sound SAR image interpretation.
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Figure 3. Soft computing methods to taxonomy on SAR despeckling discussed in this review.

The Figure 3 gives a summary of the soft computing and optimization-based strategies employed to SAR.
image despeckling. The recent studies on SAR image despeckling can be categorized into three in a broad
way methodological streams. The former is the first stream, which is founded on fuzzy and neuro-fuzzy
paradigms, where expert the knowledge is integrated with fuzzy rules, adaptive membership functions
and edge-sensitive homogeneity mechanisms to selectively smooth flat areas and protect boundaries and
structural changes of SAR images [7,8]. These strategies would work well in the management of without
undue blurring.

The second one is dominated by those techniques based on neural learning, such as convolutional neural
networks, autoencoders, generative adversarial networks, and new diffusion-based generative models.
These computational models can simulate complicated speckle patterns and texture.

are dependencies and may be trained with supervised, unsupervised or self-supervised strategies,
therefore increasing the use of clean ground truth SAR data [9-12]. They are capable of learning
hierarchical and multi-scale representations has resulted in the major noise suppression and preservation
of features.

The third stream considers optimization algorithms that are evolutionary and swarm-based like genetic
algorithms, particle swarm optimization, differential evolution, artificial bee colony, grey wolf
optimization and their multi-objective counterparts, such as NSGA-Il and MOPSO. These methods are use
this is mainly to optimize the parameters of despeckling and objective functions, which make it possible
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to optimize effectively trade-off among conflicting objectives like speckle reduction, edge retention and
texture fidelity [13-14].

In more recent times, a definite turn to hybrid and multi-objective systems is to be seen, where
evolutionary optimization techniques are combined with deep learning models. Such combinations allow
simultaneous optimization of radiometric accuracy, structural similarity and textural consistency, leaving
to stronger and more generalisable SAR despeckling solutions [15-18]. This trend reflects the increasing
focus on balanced performance as opposed to single-metric optimization.

Speckle Noise Model and Evaluation Metrics

Multiplicative speckle model: Speckle noise in synthetic aperture radar (SAR) imaging Speckle noise in
synthetic aperture radar (SAR) imaging is generally modelled in a multiplicative formulation, in which the
observed intensity image is represented as the combination of the real backscatter reflectivity and a
haphazard speckle. For fully developed speckle, the noise term is often assumed to be described by
Gamma distribution with respect to the number of looks, which is a true description of the changes in
intensities of homogenous regions. Transforming the data into the logarithmic domain transforms the
multiplicative noise to the form of an approximation of the additive form, thus. making the use of classical
filtering, variational expressions and homomorphic more straightforward. techniques. This is further
embedded in the modern diffusion- and variational-based despeckling methods statistical modelling their
terms of data fidelity so as to more closely observe the SAR noise properties [19].

A combination of the performance of despeckling methods of SAR is based on quantitative and qualitative
data that evaluate noise-reduction as well as structural conservation. Also, even though the peak signal-
to-noise ratio (PSNR) is a commonly used fidelity metric in cases where reference images are available. it
tends not to be associated with perceived visual quality. Consequently, structure-sensitive indices so-
called structural similarity (SSIM) and multiscale SSIM (MS-SSIM or MSSIM) are typically used. In Specific
SAR-based studies, the evaluation is done using Equivalent Number of Looks (ENL), Speckle suppression
Index (SSI), edge preservation measurements, and ratio-image analysis. These parameters are also used
to evaluate despeckling performance, especially with real SAR data where clean reference data is not
available [20].

Conflicting metrics and multi-objective optimization: There are a lot of despeckling quality metrics that
have inherent conflicts, trade offs, strong smoothing is likely to increase homogeneity-based measures of
ENL and PSNR and also reducing edge sharpness as well as structural similarity. This has been an impetus
to the conflict implementation of multi-objective optimization models that explicitly seek solutions to
Pareto-optima as opposed to depending on one aggregated cost function[21].

Review Methodology

This review followed a structured survey procedure: (i) query formulation using terms related to SAR
despeckling, speckle reduction, soft computing, fuzzy/neuro-fuzzy filters, deep learning, and optimization
(GA/PSO/DE and multi-objective variants); (ii) screening by relevance to SAR or SAR-like speckle; (iii) full-
text assessment with emphasis on algorithmic novelty, evaluation rigor, and availability of
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implementation details; and (iv) categorization into the taxonomy of Figure 3. Priority was given to peer-
reviewed journal and conference publications and widely cited foundational works. We also include
representative recent works on self-supervised and generative approaches that address the lack of clean
SAR references. [22—-24]

Fuzzy and Neuro-Fuzzy Techniques

Fuzzy systems are attractive for despeckling because speckle characteristics and edge/texture behaviors
can be described using linguistic rules (e.g., "if local variance is high and gradient is strong, preserve center
pixel"). A typical fuzzy filter computes membership values from local statistics (mean, variance, coefficient
of variation) and then produces an output via inference and defuzzification. Fuzzy weighted mean/median
designs can reduce speckle while maintaining edges by down-weighting neighbors likely belonging to
edges.

Parameter selection is crucial. Several works determine membership function parameters using swarm
intelligence; for example, fuzzy rule parameters can be tuned by PSO to better distinguish noise from
structural variation. Neuro-fuzzy approaches additionally learn rule parameters from data, combining
interpretability with learning capacity.

Representative directions include: (i) fuzzy inference systems for nonlinear filtering; (ii) fuzzy edge-aware
despeckling (preserve edges first, then filter); and (iii) hybrid fuzzy + diffusion/variational schemes that
couple fuzzy edge detectors with PDE-based smoothing [25,26].

Neural and Deep Learning Approaches

Neural computing for despeckling has progressed from shallow networks to modern deep architectures.
CNN-based despeckling: Residual learning and discriminative training have been used for SAR despeckling
by learning mappings in either intensity or log domains. Deep CNNs can capture complex spatial context
but may introduce texture hallucination or oversmoothing if trained on mismatched synthetic speckle.
Residual and multi-scale designs attempt to preserve fine structures.

Unsupervised and self-supervised learning: Because clean SAR is generally unavailable, self-supervised
strategies have gained attention. Methods built on Deep Image Prior adapt the network to a single noisy
image and incorporate speckle statistics via tailored losses. Speckle-driven unsupervised networks aim to
train without clean targets and improve generalization to real scenes.

Generative and diffusion models: GAN-based approaches can learn realistic textures, but stability and
faithfulness are concerns. Recently, diffusion-based denoisers have been proposed to better model global
context, potentially mitigating CNN texture loss. These models often require careful training and
evaluation to ensure preservation of radiometric properties important in SAR.

Hyperparameter and architecture optimization: Soft computing is increasingly used to optimize deep
models, including hyperparameter tuning (e.g., via design-of-experiments or evolutionary search) and
objective design that balances fidelity and structure. [27,28]

Evolutionary and Swarm Optimization for SAR Despeckling

Evolutionary algorithms (EAs) and swarm intelligence are widely used for: (i) tuning parameters of classical
filters (e.g., window size, diffusion step, guided filter parameters), (ii) selecting transform-domain
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thresholds (wavelet/curvelet/contourlet/DTCWT), (iii) optimizing membership functions and rule bases in
fuzzy filters, and (iv) selecting among competing denoising configurations.

Common optimizers: Genetic algorithms (GA), particle swarm optimization (PSO), differential evolution
(DE), and their variants are most common; many other bio-inspired methods have been explored, but
comparative evidence is often limited. In SAR despeckling, optimization is typically low-to-medium
dimensional (thresholds, shrinkage parameters, filter gains), which suits population-based metaheuristics.
Multi-objective formulations: Multi-objective PSO (MOPSO) has been explicitly used to optimize
despeckling parameters under conflicting criteria (e.g., minimize speckle while preserving
edges/structure). Transform-domain schemes often treat threshold selection as a multi-objective
problem (maximize PSNR and SSIM/MSSIM simultaneously) and then pick a solution from the Pareto
archive based on additional preferences. Multi-objective evolutionary algorithms such as NSGA-II provide
an alternative, with strong diversity preservation and Pareto sorting.

Practical considerations: Metaheuristics can be computationally expensive because each candidate
requires a full despeckling run and metric computation. Strategies to reduce cost include working on
patches, multi-resolution search, surrogate modeling, and warm-starting using analytical estimates. [29].

Comparative Synthesis
This section summarizes representative methods within each category. Table 1 provides a taxonomy-
oriented comparison, while Table 2 highlights how optimization is integrated into despeckling pipelines
and what objectives are commonly used.

Table 1. High-level comparison of soft computing categories for SAR despeckling.

Category Representative idea Typical design | Strengths Limitations Exampl
choices erefs
Fuzzy / | Membership + rules to | Local statistics | Interpretable; Sensitive to | [25,26]
Neuro- adapt filtering to local | (mean/var/CV), good edge | parameter design;
fuzzy context fuzzy weights, | preservation may struggle on
edge-aware when rules are | complex textures
inference well designed
CNN-based | Learn nonlinear | Multi-scale CNNs, | Strong Needs training data; | [30-31]
mapping; often residual | log-domain performance; generalization gap
learning training, residual | fast inference | (synthetic vs real
blocks after training speckle)
Self- Train  without clean | Deep Image Prior, | Better Compute cost; risk of | [23,27]
/Unsupervi | targets; exploit speckle | speckle-driven adaptation to | under/over-fitting to
sed DL statistics losses, real SAR; fewer | a single scene
consistency label
constraints requirements
GAN / | Generative priors for | Adversariallosses; | Good Faithfulness/radiom | [6,28]
diffusion texture and global | diffusion perceptual etry concerns;
structure denoising with | texture; training complexity
probabilistic captures global
modeling context
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Optimizati | Optimize PSO/GA to select | Flexible; can | Optimization [21]
on-tuned shrinkage/thresholds in | thresholds per | adapt to scene | overhead; metrics
transforms | wavelet/curvelet/contou | sub-band; statistics; may not reflect task
rlet/DTCWT homomorphic improves quality
pre-processing classic
pipelines
Hybrid /| Combine filters + | MOPSO/NSGA-II Explicit trade- | Requires preference | [24,32]
multi- optimization for trade- | to maximize PSNR | off control; | selection from
objective offs and MSSIM; | robust across | Pareto set; compute
choose Pareto | scenes cost
solution
Table 2. How optimization (including multi-objective) is used in SAR despeckling pipelines.
Where Decision Optimizer Objectives Selection Notes Example
optimization is variables (examples) | from Pareto refs
used set
Transform Sub-band PSO/GA/ Max PSNR, Knee point; Popular with [24,32]
thresholding thresholds / DE/ max weighted DTCWT/curvelet
shrinkage MOPSO (MS)SSIM, preference; ; can be patch-
parameters max ENL, best MSSIM based to reduce
min SSI under PSNR cost
constraint
Fuzzy Membership PSO / GA Max Choose Improves [25]
membership function PSNR/SSIM; | solution with robustness of
tuning breakpoints; minimize best SSIM on fuzzy filters
rule weights edge loss validation across scenes
scenes
Diffusion/variatio Step size, GA / PSO Max Pick non- Avoids manual [33,34]
nal tuning conductance, PSNR/SSIM; dominated parameter
regularization minimize with highest tuning; can be
weight gradient loss edge index expensive
Deep model Depth/width, | Evolutiona Max Select best Increasingly [27,28]
hyperparameters | learningrate, | rysearch/ | PSNR/SSIM; validation used;
loss weights design-of- minimize compromise; | reproducibility
experimen artifacts or Pareto depends on
ts over code/data
compute
cost

Datasets, Protocols, and Reproducibility

Evaluation in SAR despeckling is complicated by the lack of ground-truth clean images. Common strategies
include: (i) simulated speckle added to optical or SAR-like reflectivity fields; (ii) multi-look averaging to
approximate a cleaner reference; (iii) temporal stacks where averaging or multitemporal methods provide
proxies; and (iv) no-reference analyses using ratio images and statistical checks.
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Best practices for reproducible evaluation include: reporting sensor/source details, polarization,
resolution, number of looks (if known), and preprocessing; providing parameter settings or search ranges;
using multiple scenes with diverse textures (urban, agriculture, water); and reporting both full-reference
metrics (PSNR/SSIM/MSSIM) on simulated settings and SAR-specific statistics (ENL/SSI) on real scenes.
Where possible, downstream task metrics should complement perceptual scores. [4,5]

Open Challenges and Future Directions

(1) Real-SAR generalization and self-supervision. Closing the gap between synthetic speckle training and
real SAR is still a primary issue; self-supervised and speckle-driven training objectives are promising.

(2) Metric-aligned objectives. PSNR and MSSIM are useful but not sufficient; objective functions should
reflect SAR radiometry, texture stationarity, and downstream task needs. Multi-objective setups can
incorporate task losses (e.g., detection performance) alongside denoising quality.

(3) Multi-objective decision making. Pareto sets require selection. Research is needed on principled
selection rules (knee detection, preference learning, and robustness analysis) to avoid overfitting to a
single metric.

(4) Computational efficiency. Optimization-based methods can be slow. Surrogates, learned parameter
predictors, and coarse-to-fine strategies can reduce cost. Diffusion models also demand acceleration
techniques for deployment.

(5) Uncertainty and reliability. SAR is used in high-stakes applications (disaster response, infrastructure
monitoring). Methods should quantify uncertainty and avoid hallucination. Physics-informed priors and
conservative filtering are promising.

(6) Standardized benchmarks. Community progress would benefit from agreed-upon datasets, protocols,
and open implementations, particularly for real SAR scenes with consistent metadata. [5,6,28]

Conclusion

Soft computing has become an important pillar of SAR despeckling research. Fuzzy and neuro-fuzzy
methods offer interpretable, locally adaptive filtering; deep neural methods deliver strong denoising
capacity but face training and generalization challenges; and evolutionary/swarm optimizers provide
practical tools to tune parameters and to directly model trade-offs using multi-objective formulations.
Multi-objective optimization (e.g., PSNR-MSSIM) is especially valuable for controlling the speckle—detail
balance and for translating algorithm design into application-specific preferences. Future work should
emphasize self-supervised learning on real SAR, objective functions aligned with downstream tasks and
SAR statistics, and more reproducible benchmarking to ensure robust progress.
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