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Abstract: Speckle is an inherent multiplicative noise in coherent imaging systems such as synthetic 

aperture radar (SAR), and it reduces radiometric resolution, obscures weak scatterers, and degrades 

downstream tasks (e.g., detection, segmentation, and classification). Over the last four decades, 

despeckling has evolved from local statistical filters (e.g., Lee/Frost/Kuan families) to variational and 

nonlocal approaches, and more recently to data‑driven deep networks. Within this landscape, soft 

computing—broadly covering fuzzy logic, neural computing, and evolutionary/swarm optimization—has 

been increasingly used to address the central despeckling dilemma: suppress speckle while preserving 

edges, textures, and small man‑made targets. This review organizes soft computing techniques for SAR 

despeckling into: (i) fuzzy and neuro‑fuzzy filtering; (ii) neural and deep learning models (CNN, 

autoencoders, GANs, and diffusion models); and (iii) evolutionary and swarm optimization used for 

parameter tuning, transform-domain thresholding, and multi‑objective decision making. Particular 

emphasis is placed on multi‑objective formulations that jointly optimize PSNR and MSSIM/SSIM, yielding 

Pareto‑optimal trade‑off solutions (e.g., MOPSO-based threshold selection). We summarize datasets, 

evaluation metrics, and reproducibility concerns, and provide a comparative synthesis of strengths, 

limitations, and research gaps. Finally, we outline actionable future directions, including self‑supervised 

despeckling on real SAR, objective‑function design aligned with task performance, uncertainty 

quantification, and standardized evaluation protocols. 
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Introduction 

 

Synthetic aperture radar (SAR) provides all‑weather, day‑night Earth observation by exploiting coherent 

microwave scattering. However, coherent processing produces granular speckle, commonly modeled as 

multiplicative noise, which lowers visual interpretability and can bias quantitative analysis. Consequently, 

despeckling remains a crucial pre‑processing step for both human interpretation and automated pipelines 

[1].  The SAR images are generally captured by any moving object such as satellite or plane displayed by 

Figure 1. These SAR images are so much popular now a days due to its uses in different fields such as 

agriculture, environment study, forestry and military surveillances etc. The SAR images are affected due 

to its coherent nature and heavily affected by the granular noise infused during its capturing process. The 

noise is known as multiplicative noise. There are several algorithms available for denoising of optical 
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images but there are not so many algorithms available for removing speckle noise from the SAR images.  

SAR image simulation can be divided into two categories during the electromagnetic scattering flow. The 

first is a signal-level simulation that primarily focusses on electromagnetic scattering, while the second is 

an image-level simulation that focusses on pre-existing or hypothetical distribution [2]. Classical 

despeckling methods include local statistical filters (Lee, Frost, Kuan), diffusion models, and 

transform‑domain shrinkage. Although these approaches can suppress speckle, they often trade noise 

removal against edge/texture preservation, and their performance is sensitive to hand‑tuned parameters 

and scene heterogeneity. In parallel, modern deep learning approaches have reported strong results, but 

supervised training is challenged by the scarcity of truly noise‑free SAR reference images and the 

mismatch between synthetic and real speckle.  

 
Figure 1: Typical SAR despeckling capturing process [1]. 

Soft computing offers complementary tools for this problem. Fuzzy logic can encode expert knowledge 

and local context via membership functions and rule bases; neural networks can learn nonlinear 

despeckling mappings; and evolutionary/swarm methods can automatically tune parameters or losses, 

including in multi‑objective settings. Recent work has also explored self‑supervised learning to reduce 

reliance on clean targets and better adapt to real SAR speckle statistics. This review focuses on soft 

computing techniques for SAR despeckling, with a special emphasis on multi‑objective optimization (e.g., 

joint PSNR–MSSIM optimization) and optimization-driven parameter selection for transform‑domain and 

hybrid filters. We aim to provide: (i) a structured taxonomy, (ii) an overview of metrics and datasets, (iii) 

a comparative synthesis of representative methods, and (iv) future research opportunities [3–6]. 

 
Figure 2: Typical SAR despeckling workflow and its role in downstream interpretation tasks. 

Figure 2 presents a sequential workflow for despeckling process of Synthetic Aperture Radar (SAR) 

imagery. It begins at the stage of SAR data acquisition, in which coherent signal processing results in the. 
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images formed under the influence of granular noise. This noise is represented then in a multiplicative 

form speckle model, an explanation of the interaction between the actual backscatter and speckle 

contents. In the second step, despeckling schemes, which make use of soft computing or mixed models 

are used to authenticate noise reduction but important spatial and textual details are preserved. The 

images are then refined and finally used as downstream tasks, such as change detection, land cover 

classification, and image segmentation, assisting in sound and sound SAR image interpretation.

 
Figure 3. Soft computing methods to taxonomy on SAR despeckling discussed in this review. 

 

The Figure 3 gives a summary of the soft computing and optimization-based strategies employed to SAR. 

image despeckling. The recent studies on SAR image despeckling can be categorized into three in a broad 

way methodological streams. The former is the first stream, which is founded on fuzzy and neuro-fuzzy 

paradigms, where expert the knowledge is integrated with fuzzy rules, adaptive membership functions 

and edge-sensitive homogeneity mechanisms to selectively smooth flat areas and protect boundaries and 

structural changes of SAR images [7,8]. These strategies would work well in the management of without 

undue blurring. 

The second one is dominated by those techniques based on neural learning, such as convolutional neural 

networks, autoencoders, generative adversarial networks, and new diffusion-based generative models. 

These computational models can simulate complicated speckle patterns and texture. 

are dependencies and may be trained with supervised, unsupervised or self-supervised strategies, 

therefore increasing the use of clean ground truth SAR data [9–12]. They are capable of learning 

hierarchical and multi-scale representations has resulted in the major noise suppression and preservation 

of features. 

 

The third stream considers optimization algorithms that are evolutionary and swarm-based like genetic 

algorithms, particle swarm optimization, differential evolution, artificial bee colony, grey wolf 

optimization and their multi-objective counterparts, such as NSGA-II and MOPSO. These methods are use 

this is mainly to optimize the parameters of despeckling and objective functions, which make it possible 
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to optimize effectively trade-off among conflicting objectives like speckle reduction, edge retention and 

texture fidelity [13–14]. 

 

In more recent times, a definite turn to hybrid and multi-objective systems is to be seen, where 

evolutionary optimization techniques are combined with deep learning models. Such combinations allow 

simultaneous optimization of radiometric accuracy, structural similarity and textural consistency, leaving 

to stronger and more generalisable SAR despeckling solutions [15-18]. This trend reflects the increasing 

focus on balanced performance as opposed to single-metric optimization. 

 

Speckle Noise Model and Evaluation Metrics 

 

Multiplicative speckle model: Speckle noise in synthetic aperture radar (SAR) imaging Speckle noise in 

synthetic aperture radar (SAR) imaging is generally modelled in a multiplicative formulation, in which the 

observed intensity image is represented as the combination of the real backscatter reflectivity and a 

haphazard speckle. For fully developed speckle, the noise term is often assumed to be described by 

Gamma distribution with respect to the number of looks, which is a true description of the changes in 

intensities of homogenous regions. Transforming the data into the logarithmic domain transforms the 

multiplicative noise to the form of an approximation of the additive form, thus. making the use of classical 

filtering, variational expressions and homomorphic more straightforward. techniques. This is further 

embedded in the modern diffusion- and variational-based despeckling methods statistical modelling their 

terms of data fidelity so as to more closely observe the SAR noise properties [19]. 

 

A combination of the performance of despeckling methods of SAR is based on quantitative and qualitative 

data that evaluate noise-reduction as well as structural conservation. Also, even though the peak signal-

to-noise ratio (PSNR) is a commonly used fidelity metric in cases where reference images are available. it 

tends not to be associated with perceived visual quality. Consequently, structure-sensitive indices so-

called structural similarity (SSIM) and multiscale SSIM (MS-SSIM or MSSIM) are typically used. In Specific 

SAR-based studies, the evaluation is done using Equivalent Number of Looks (ENL), Speckle suppression 

Index (SSI), edge preservation measurements, and ratio-image analysis. These parameters are also used 

to evaluate despeckling performance, especially with real SAR data where clean reference data is not 

available [20]. 

Conflicting metrics and multi-objective optimization: There are a lot of despeckling quality metrics that 

have inherent conflicts, trade offs, strong smoothing is likely to increase homogeneity-based measures of 

ENL and PSNR and also reducing edge sharpness as well as structural similarity. This has been an impetus 

to the conflict implementation of multi-objective optimization models that explicitly seek solutions to 

Pareto-optima as opposed to depending on one aggregated cost function[21]. 

 

Review Methodology 

This review followed a structured survey procedure: (i) query formulation using terms related to SAR 

despeckling, speckle reduction, soft computing, fuzzy/neuro-fuzzy filters, deep learning, and optimization 

(GA/PSO/DE and multi-objective variants); (ii) screening by relevance to SAR or SAR-like speckle; (iii) full-

text assessment with emphasis on algorithmic novelty, evaluation rigor, and availability of 
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implementation details; and (iv) categorization into the taxonomy of Figure 3. Priority was given to peer-

reviewed journal and conference publications and widely cited foundational works. We also include 

representative recent works on self-supervised and generative approaches that address the lack of clean 

SAR references. [22–24] 

 

Fuzzy and Neuro‑Fuzzy Techniques 

Fuzzy systems are attractive for despeckling because speckle characteristics and edge/texture behaviors 

can be described using linguistic rules (e.g., "if local variance is high and gradient is strong, preserve center 

pixel"). A typical fuzzy filter computes membership values from local statistics (mean, variance, coefficient 

of variation) and then produces an output via inference and defuzzification. Fuzzy weighted mean/median 

designs can reduce speckle while maintaining edges by down-weighting neighbors likely belonging to 

edges. 

 

Parameter selection is crucial. Several works determine membership function parameters using swarm 

intelligence; for example, fuzzy rule parameters can be tuned by PSO to better distinguish noise from 

structural variation. Neuro‑fuzzy approaches additionally learn rule parameters from data, combining 

interpretability with learning capacity. 

 

Representative directions include: (i) fuzzy inference systems for nonlinear filtering; (ii) fuzzy edge-aware 

despeckling (preserve edges first, then filter); and (iii) hybrid fuzzy + diffusion/variational schemes that 

couple fuzzy edge detectors with PDE-based smoothing [25,26]. 

 

Neural and Deep Learning Approaches 

Neural computing for despeckling has progressed from shallow networks to modern deep architectures. 

CNN-based despeckling: Residual learning and discriminative training have been used for SAR despeckling 

by learning mappings in either intensity or log domains. Deep CNNs can capture complex spatial context 

but may introduce texture hallucination or oversmoothing if trained on mismatched synthetic speckle. 

Residual and multi-scale designs attempt to preserve fine structures. 

Unsupervised and self-supervised learning: Because clean SAR is generally unavailable, self-supervised 

strategies have gained attention. Methods built on Deep Image Prior adapt the network to a single noisy 

image and incorporate speckle statistics via tailored losses. Speckle-driven unsupervised networks aim to 

train without clean targets and improve generalization to real scenes. 

Generative and diffusion models: GAN-based approaches can learn realistic textures, but stability and 

faithfulness are concerns. Recently, diffusion-based denoisers have been proposed to better model global 

context, potentially mitigating CNN texture loss. These models often require careful training and 

evaluation to ensure preservation of radiometric properties important in SAR. 

Hyperparameter and architecture optimization: Soft computing is increasingly used to optimize deep 

models, including hyperparameter tuning (e.g., via design-of-experiments or evolutionary search) and 

objective design that balances fidelity and structure. [27,28] 

Evolutionary and Swarm Optimization for SAR Despeckling 

Evolutionary algorithms (EAs) and swarm intelligence are widely used for: (i) tuning parameters of classical 

filters (e.g., window size, diffusion step, guided filter parameters), (ii) selecting transform-domain 
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thresholds (wavelet/curvelet/contourlet/DTCWT), (iii) optimizing membership functions and rule bases in 

fuzzy filters, and (iv) selecting among competing denoising configurations. 

Common optimizers: Genetic algorithms (GA), particle swarm optimization (PSO), differential evolution 

(DE), and their variants are most common; many other bio-inspired methods have been explored, but 

comparative evidence is often limited. In SAR despeckling, optimization is typically low-to-medium 

dimensional (thresholds, shrinkage parameters, filter gains), which suits population-based metaheuristics. 

Multi-objective formulations: Multi-objective PSO (MOPSO) has been explicitly used to optimize 

despeckling parameters under conflicting criteria (e.g., minimize speckle while preserving 

edges/structure). Transform-domain schemes often treat threshold selection as a multi-objective 

problem (maximize PSNR and SSIM/MSSIM simultaneously) and then pick a solution from the Pareto 

archive based on additional preferences. Multi-objective evolutionary algorithms such as NSGA-II provide 

an alternative, with strong diversity preservation and Pareto sorting. 

Practical considerations: Metaheuristics can be computationally expensive because each candidate 

requires a full despeckling run and metric computation. Strategies to reduce cost include working on 

patches, multi-resolution search, surrogate modeling, and warm-starting using analytical estimates. [29]. 

 

Comparative Synthesis 

This section summarizes representative methods within each category. Table 1 provides a taxonomy-

oriented comparison, while Table 2 highlights how optimization is integrated into despeckling pipelines 

and what objectives are commonly used. 

Table 1. High-level comparison of soft computing categories for SAR despeckling. 

Category Representative idea Typical design 

choices 

Strengths Limitations Exampl

e refs 

Fuzzy / 

Neuro-

fuzzy 

Membership + rules to 

adapt filtering to local 

context 

Local statistics 

(mean/var/CV), 

fuzzy weights, 

edge-aware 

inference 

Interpretable; 

good edge 

preservation 

when rules are 

well designed 

Sensitive to 

parameter design; 

may struggle on 

complex textures 

[25,26] 

CNN-based Learn nonlinear 

mapping; often residual 

learning 

Multi-scale CNNs, 

log-domain 

training, residual 

blocks 

Strong 

performance; 

fast inference 

after training 

Needs training data; 

generalization gap 

(synthetic vs real 

speckle) 

[30-31] 

Self-

/Unsupervi

sed DL 

Train without clean 

targets; exploit speckle 

statistics 

Deep Image Prior, 

speckle-driven 

losses, 

consistency 

constraints 

Better 

adaptation to 

real SAR; fewer 

label 

requirements 

Compute cost; risk of 

under/over-fitting to 

a single scene 

[23,27] 

GAN / 

diffusion 

Generative priors for 

texture and global 

structure 

Adversarial losses; 

diffusion 

denoising with 

probabilistic 

modeling 

Good 

perceptual 

texture; 

captures global 

context 

Faithfulness/radiom

etry concerns; 

training complexity 

[6,28] 



  

SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

Optimizati

on-tuned 

transforms 

Optimize 

shrinkage/thresholds in 

wavelet/curvelet/contou

rlet/DTCWT 

PSO/GA to select 

thresholds per 

sub-band; 

homomorphic 

pre-processing 

Flexible; can 

adapt to scene 

statistics; 

improves 

classic 

pipelines 

Optimization 

overhead; metrics 

may not reflect task 

quality 

[21] 

Hybrid / 

multi-

objective 

Combine filters + 

optimization for trade-

offs 

MOPSO/NSGA-II 

to maximize PSNR 

and MSSIM; 

choose Pareto 

solution 

Explicit trade-

off control; 

robust across 

scenes 

Requires preference 

selection from 

Pareto set; compute 

cost 

[24,32] 

 

Table 2. How optimization (including multi-objective) is used in SAR despeckling pipelines. 

Where 

optimization is 

used 

Decision 

variables 

Optimizer Objectives 

(examples) 

Selection 

from Pareto 

set 

Notes Example 

refs 

Transform 

thresholding 

Sub-band 

thresholds / 

shrinkage 

parameters 

PSO / GA / 

DE / 

MOPSO 

Max PSNR, 

max 

(MS)SSIM, 

max ENL, 

min SSI 

Knee point; 

weighted 

preference; 

best MSSIM 

under PSNR 

constraint 

Popular with 

DTCWT/curvelet

; can be patch-

based to reduce 

cost 

[24,32] 

Fuzzy 

membership 

tuning 

Membership 

function 

breakpoints; 

rule weights 

PSO / GA Max 

PSNR/SSIM; 

minimize 

edge loss 

Choose 

solution with 

best SSIM on 

validation 

scenes 

Improves 

robustness of 

fuzzy filters 

across scenes 

[25] 

Diffusion/variatio

nal tuning 

Step size, 

conductance, 

regularization 

weight 

GA / PSO Max 

PSNR/SSIM; 

minimize 

gradient loss 

Pick non-

dominated 

with highest 

edge index 

Avoids manual 

parameter 

tuning; can be 

expensive 

[33,34] 

Deep model 

hyperparameters 

Depth/width, 

learning rate, 

loss weights 

Evolutiona

ry search / 

design-of-

experimen

ts 

Max 

PSNR/SSIM; 

minimize 

artifacts 

Select best 

validation 

compromise; 

or Pareto 

over 

compute 

cost 

Increasingly 

used; 

reproducibility 

depends on 

code/data 

[27,28] 

 

Datasets, Protocols, and Reproducibility 

Evaluation in SAR despeckling is complicated by the lack of ground-truth clean images. Common strategies 

include: (i) simulated speckle added to optical or SAR-like reflectivity fields; (ii) multi-look averaging to 

approximate a cleaner reference; (iii) temporal stacks where averaging or multitemporal methods provide 

proxies; and (iv) no-reference analyses using ratio images and statistical checks. 
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Best practices for reproducible evaluation include: reporting sensor/source details, polarization, 

resolution, number of looks (if known), and preprocessing; providing parameter settings or search ranges; 

using multiple scenes with diverse textures (urban, agriculture, water); and reporting both full-reference 

metrics (PSNR/SSIM/MSSIM) on simulated settings and SAR-specific statistics (ENL/SSI) on real scenes. 

Where possible, downstream task metrics should complement perceptual scores. [4,5] 

 

Open Challenges and Future Directions 

(1) Real-SAR generalization and self-supervision. Closing the gap between synthetic speckle training and 

real SAR is still a primary issue; self-supervised and speckle-driven training objectives are promising. 

(2) Metric-aligned objectives. PSNR and MSSIM are useful but not sufficient; objective functions should 

reflect SAR radiometry, texture stationarity, and downstream task needs. Multi-objective setups can 

incorporate task losses (e.g., detection performance) alongside denoising quality. 

(3) Multi-objective decision making. Pareto sets require selection. Research is needed on principled 

selection rules (knee detection, preference learning, and robustness analysis) to avoid overfitting to a 

single metric. 

(4) Computational efficiency. Optimization-based methods can be slow. Surrogates, learned parameter 

predictors, and coarse-to-fine strategies can reduce cost. Diffusion models also demand acceleration 

techniques for deployment. 

(5) Uncertainty and reliability. SAR is used in high-stakes applications (disaster response, infrastructure 

monitoring). Methods should quantify uncertainty and avoid hallucination. Physics-informed priors and 

conservative filtering are promising. 

(6) Standardized benchmarks. Community progress would benefit from agreed-upon datasets, protocols, 

and open implementations, particularly for real SAR scenes with consistent metadata. [5,6,28] 

 

Conclusion 

Soft computing has become an important pillar of SAR despeckling research. Fuzzy and neuro-fuzzy 

methods offer interpretable, locally adaptive filtering; deep neural methods deliver strong denoising 

capacity but face training and generalization challenges; and evolutionary/swarm optimizers provide 

practical tools to tune parameters and to directly model trade-offs using multi-objective formulations. 

Multi-objective optimization (e.g., PSNR–MSSIM) is especially valuable for controlling the speckle–detail 

balance and for translating algorithm design into application-specific preferences. Future work should 

emphasize self-supervised learning on real SAR, objective functions aligned with downstream tasks and 

SAR statistics, and more reproducible benchmarking to ensure robust progress. 
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