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Abstract: Now-a-days, producing high-quality synthetic facial data is crucial to the dependability and
privacy of face recognition systems. This paper introduces a novel approach that combines
hyperspherical embedding with HyperFace-based multi-task learning to make artificial images
appear more realistic and easier to distinguish. This technique makes use of HyperFace to
simultaneously estimate significant facial characteristics including gender, position, and landmarks,
which contributes to the creation of more detailed and relevant feature representations. These
features are then mapped into a hyperspherical space using an angular softmax loss function, which
aids in highlighting individual differences. These hyperspherical embeddings are then used to train a
generative adversarial network (GAN), which enables the creation of facial images that maintain the
same identity but exhibit numerous variances within the same group. The results demonstrate that
this approach outperforms current methods like StyleGAN2 and FacelD-GAN in terms of face
verification accuracy, Fl-score, and how well the generated embeddings can distinguish between
different identities when tested on well-known benchmark datasets like LFW, CelebA-HQ, and
VGGFace2. These findings demonstrate how hyperspherical geometry combined with multi-task
learning produces extremely realistic and identifiable synthetic face data, which enhances face
recognition systems.

Keywords: Synthetic face data, HyperFace, Hyperspherical embedding, Multi-task learning, angular
softmax loss, Face Recognition, Generative Adversarial Networks (GANSs), Identity preserving
synthesis.

1. Introduction

Because there are large, varied, and high-quality datasets available, deep learning performs well for
face recognition [1,2]. However, obtaining and utilizing actual facial data raises serious privacy,
consent, and ethical issues, particularly given that many nations have stringent regulations regarding
biometric data [3]. Furthermore, real-world datasets frequently overlook significant variations in
lighting, ethnicity, placement, and facial expressions, which can skew models and make them less
effective in various contexts [4,5].

Synthetic data has emerged as a superior solution to these issues. Without worrying about privacy, it
helps produce a wide range of balanced samples [6].

Despite this, contemporary techniques for creating synthetic faces struggle to manage facial
features, maintain the same identity, and balance realistic images. For instance, while models like as
StyleGAN [7], StyleGAN2 [8], and StyleGAN3 [9] create incredibly lifelike faces, they frequently
overlook critical identifying characteristics that are essential for accurate face recognition.
Additionally, these generated faces are less helpful for tasks like recognition and verification due to
their unclear feature representations [10].
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Diffusion models and domain adaptation have been coupled in recent work, such as GANDiffFace
[11] and ChildGAN [12], to increase diversity and realism in synthetic face generation. Although
these techniques result in higher visual quality, they still lack robust methods to guarantee that
identities are distinct in the latent space, which is crucial for maintaining identities in generated
images [13].

To address these issues, this work presents a novel framework with two significant enhancements:
hyperspherical embedding and HyperFace-based multi-task learning. A model called HyperFace [14]
can perform several tasks simultaneously, including gender categorization, face identification,
landmark detection, and posture assessment. It generates intricate feature representations. The
system places these features in a hyperspherical embedding space using an angular softmax loss
[15], using angular margins to provide distinct identity boundaries. This expands on earlier studies
that demonstrated hyperspherical embeddings can enhance models for facial recognition, including
SphereFace [16], CosFace [17], and ArcFace [18].

Lastly, by leveraging the learnt hyperspherical embeddings to direct the GAN, the framework
produces incredibly realistic face images with a great deal of variance within the same identity while
maintaining identity accuracy. This approach outperforms other leading methods like StyleGAN2 and
FacelD-GAN in face verification accuracy, Fl-score, and embedding separability, according to tests
on common datasets including LFW, CelebA-HQ, and VGGFace2.

The study's key findings are:

- Developing a novel method for creating synthetic faces that maintain identities by fusing
HyperFace's multi-task features with hyperspherical embedding.

- Using hyperspherical embeddings to direct the GAN process ensures that generated faces
are easily recognizable.

- Outperforming existing techniques in common tests of facial recognition.

This is how the remainder of the paper is structured. In Section 2, relevant studies on synthetic face
generation, hyperspherical learning, and multitask learning are reviewed. The suggested strategy is
described in Section 3. Details of implementation are provided in Section 4. The findings and analysis
are shown in Section 5. The results are discussed in Section 6, and the paper is concluded in Section
7.

2. Related Work
2.1 Synthetic Face Generation

The creation of synthetic faces has improved significantly with the development of deep generative
models [19], particularly GANs. Models like StyleGAN and its variants, like StyleGAN2 and StyleGANS3,
are very good at producing realistic, high-resolution face images; they use adaptive normalization
and a style-based structure to separate high-level features from random changes, allowing for fine
control over the output. However, they frequently concentrate on making the images appear
realistic rather than maintaining identity consistency or incorporating features that are crucial for
identification tasks.
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Certain techniques, such as FacelD-GAN [20], use feature extractors to maintain identity consistency
throughout GAN training. However, they frequently find it difficult to strike a balance between the
quality of the image and the precision of the identity embedding, which might result in artificial data
that is useless for verification or identification.

More recent techniques, such GANDiffFace and ChildGAN, have investigated the use of diffusion
models and domain adaptation to increase the consistency and variety of generated faces.

Others, such as DiscoFaceGAN, concentrate on isolating facial expressions from identity in order to
enable controlled editing. Despite these advancements, a clear connection between identity
embeddings and visual realism remains challenging.

Due to their inability to distinguish distinct classes in the embedding space, many current
approaches are insufficient for training trustworthy face recognition systems [21].

Consequently, frameworks that integrate discriminative learning with generative modeling are
required to provide usable and realistic synthetic face data.

2.2 Hyperspherical Learning

By positioning embeddings on a unit hypersphere and utilizing angular margins, hyperspherical
learning has become a popular method for enhancing feature discrimination. In order to improve
the distinction between various classes in face recognition, SphereFace was the first to employ
angular softmax loss.

Later techniques, such as CosFace and ArcFace, used additive cosine and angular margin losses,
respectively, to enhance training and performance.

By resolving training issues and providing a unified approach that works well with current margin-
based losses, SphereFace-R greatly enhanced hyperspherical embeddings.

Adaptive margins are used in more recent developments, such as AdaFace [22], to enhance
performance in situations where stance or lighting varies.

Because of this, hyperspherical learning has become a crucial component of contemporary face
recognition systems, particularly for open-set recognition and verification where distinct class
separation is essential [23]. Although it is mostly employed in discriminative tasks, its application to
generative models for identity-preserving synthesis has not yet been investigated.

By employing hyperspherical embeddings to direct GAN-based face synthesis, this work attempts to
remedy that.

2.3 Multi-task Learning in Face Analysis
By utilizing the links between several tasks to generate shared representations that enhance

generalization and strengthen the models, multi-task learning (MTL) has demonstrated great
promise in face analysis.
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One prominent example of this is HyperFace, which combines face identification, landmark
localization, posture estimation, and gender prediction into a single deep learning framework to
provide comprehensive and detailed feature embeddings.

Similar to this, MTCNN [24] combines face detection and alighment into a cascaded framework to
attain high accuracy and quick performance.

Expanding MTL to cover several face attributes, DMTL [25] demonstrates the advantages of shared
learning for related attribute predictions.

By including posture and expression estimates into MTL frameworks, recent initiatives such as SEPA-
Net [26] enhance recognition under various settings.

Despite these achievements, existing MTL techniques don't leverage the learnt features for
generation and instead concentrate on discriminative tasks.

In order to close that gap, this work combines HyperFace characteristics with hyperspherical learning
to direct GAN synthesis, producing artificial face images that are consistent in identity and lifelike.

3. Proposed Methodology

A Combined HyperFace and Hyperspherical Learning Framework is presented in this research. It
creates realistic and identity-consistent facial images by combining multi-task feature extraction with
discriminative hyperspherical embeddings.

The procedure consists of three basic steps: first, conditional picture synthesis utilizing a GAN-based
architecture; second, projecting the images into a hyperspherical embedding space; and third, multi-
task feature extraction using HyperFace.

3.1 System Architecture Overview

A broad overview of the proposed framework is shown in Figure 1.The structure consists of the
following:

e HyperFace Module: This component receives input photographs and gathers a lot of facial
information, including gender, head posture, and landmarks, to create detailed feature
representations.

e Hyperspherical Embedding Layer: This layer uses techniques like ArcFace or Angular Softmax
to transform the gathered features into a unit hypersphere. This enhances the distinction
between various classes and helps maintain crucial identity facts.

e The Conditional GAN Module uses the hyperspherical embeddings as a guide to produce
realistic, high-quality fake face images that are consistent and exhibit variation within the
same class [27].

3.2 Multi-task Feature Extraction

We employ HyperFace to estimate many face-related characteristics simultaneously in order to
obtain a wider range of features and support the model's performance in various scenarios.

HyperFace generates a collection of features such as these from an input image:
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In this case, face landmarks, facial pose, and gender are represented by the variables i34 , fp(,Se and
fgender, respectively.
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Figure 1: Block diagram of the proposed Combined HyperFace and Hyperspherical Learning Approach

Next, a single vector is created by combining these features:

feombined € R e e (2)

The structure and meaning required to maintain identity consistency are both included in this
extensive embedding.

3.3 Hyperspherical Embedding Layer

The aggregated feature vector is normalized and positioned on a unit hypersphere in order to
distinguish distinct identities:

= f combined
f= m ........................................................................ (3)

For classification, we employ a loss function called ArcFace that uses angular margins [18]:

eS:cos (By+m)

.. (4)
JFy

Larc =—log
e
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where m is the angular margin, s is a scaling factor, and j is the angle between the embedding and
class j. This loss makes it easier to distinguish between distinct classes, which are crucial for
producing photos that accurately depict the subject.

3.4 Conditional GAN for Image Synthesis

To generate images, we employ a modified version of StyleGAN2.The generator creates realistic
facial images (X) by combining a latent noise vector z with a hyperspherical embedding f. These
images are then sampled from the model:

To ensure that the generated faces are accurate and appear real, the training aim integrates identity
loss (Lid), adversarial loss (Ladv), and perceptual loss (Lperc):

Ltotal = Aadv Ladv + Aid Lid+ APerc LPErc ....eveveveveereeieseseresesveseseseseeennens (6)
This guarantees that the faces are realistic and have the appropriate identity traits. [27]
4. Implementation Setup
4.1 Datasets
The framework was tested on three datasets:

e Labeled Faces in the Wild (LFW) [28]: More than 13,000 images from the internet are
included in this. The images, which depict faces in various lighting and situations, are
primarily used to assess the effectiveness of verification systems.

o CelebA-HQ [29]: This excellent CelebA version aids in learning many activities. It has 30,000
1024x1024 pixel photos with 40 distinct kinds of labels.

o VGGFace2 [30]: This large dataset contains almost 3.3 million photos from 9,131 individuals.
There is a great deal of diversity in terms of people's ages, races, and positions.

4.2 Hardware and Software Environment

The testing computer was equipped with an NVIDIA Tesla V100 graphics card with 32 GB of memory,
an Intel Xeon Gold 6226R processor working at 2.9 GHz, 256 GB of memory, and the Ubuntu 20.04
LTS operating system. PyTorch 1.11 and CUDA 11.3 with Python 3.8 were used to create the models.
NumPy, OpenCV, and scikit-learn were other tools utilized.

4.3 Model Architectures

e HyperFace Multi-task Network: This network was modified to function on particular
datasets after being trained on CelebA. It picks up information about landmarks, gender, and
facial position. The original HyperFace model serves as its foundation.

o Hyperspherical Embedding Module: This component places data into a hypersphere space
using Angular Softmax loss. The spot has a size of 512.

e Conditional GAN: This model is an adaptation of StyleGAN2. It is equipped with a
discriminator and a generator. To guarantee that the images produced have the correct
identity, it blends embedding vectors with random noise.
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4.4 Training Procedures

o HyperFace Training: Using a batch size of 64, the model was trained for 50 cycles. The Adam
optimizer was employed with beta values of 0.9 and 0.999 and a learning rate of 0.0001.

e Hyperspherical Embedding Optimization: During collaborative training with HyperFace, a
combination of multi-task losses and Angular Softmax loss was employed. The weight of the
losses was equal.

o Conditional GAN Training: Using alternating optimization with the Adam optimizer, the
generator and discriminator were trained for 100 rounds. A learning rate of 0.0002 was
used.

e Data Augmentation: Methods such as cropping, randomly flipping images from left to right,
and color-changing were used to improve the model's generalization.4.5 Evaluation Metrics

These methods were used to test the framework:

e Verification Accuracy: This examined how well the framework performs by looking at the
True Accept Rate (TAR) at various False Accept Rates (FAR) on the LFW and VGGFace2
datasets.

e F1-Score: This gauges how well the model extracts features for various tasks, such as gender.

e Frechet Inception Distance (FID): This measures the variety and quality of the produced
images.

e Embedding Separability: This gauges the degree of separation between individuals by
calculating the average angle between their locations in the hypersphere.

5. Experimental Results and Analysis

This section demonstrates the effectiveness of the Combined HyperFace and Hyperspherical
Learning Framework on a number of common face datasets.

By evaluating the framework under various conditions, we examine each component's performance,
the caliber of the output, its ability to distinguish between individuals, and how it manages various
duties.

5.1 Evaluation on Benchmark Datasets

We compared our approach with other leading models such as StyleGAN2, FacelD-GAN, and
GANDiffFace using three popular face datasets: LFW, CelebA-HQ, and VGGFace2.

These comparisons are primarily concerned with the overall quality of the faces produced, the
variety of the images, and the performance of the generated photos in face verification.

5.2 Visual Quality and Diversity

Dataset style: LFW Dataset style: LFW
Age group: Middle-aged Age group: Middle-aged
Gender: Male Gender: Male

Expression: Neutral Expression: Neutral
o




Figure 2: i) Two synthetic face images representing a middle-aged male with a neutral expression,
styled to match the LFW dataset's casual and unconstrained look

Dataset style: CelebA-HQ
Age group: Young Adult
Gender: Male
Expression: smiling

Dataset style: CelebA-HQ
Age group: Young Adult
Gender: Male
Expression: smiling

ii) Two synthetic face images in the CelebA-HQ style, showcasing side-by-side variations of a young
adult male with both smiling and neutral expressions.

Dataset style: VGGFace2

Age group: Elderly

Gender: Female

Expression: smiling with glasses

Dataset style: VGGFace2

Age group: Elderly

Gender: Female

Expression: smiling with glasses

iii) Two synthetic face images of an elderly female, smiling and wearing glasses, styled to match the

VGGFace2 dataset — which emphasizes real-world diversity in lighting, pose, and background

Dataset style: VGGFace2

Age group: Elderly

Gender: Female

Expression: Neutral or smiling with glasses

SGS Initia

Dataset style: VGGFace2

Age group: Elderly

Gender: Female

Expression: Neutral or smiling with glasses




iv) Two multi-expression panels of the same elderly female identity, showing smiling, neutral, and
surprised expressions

Dataset style: VGGFace2 Dataset style: VGGFace2
Age group: Elderly Gender: Male Age group: Elderly Gender: Male

Expression: Neutral or smiling with glasses Expression: Neutral or smiling with glasses

v) Two multi-identity panels of elderly male faces, each representing a distinct identity with variation
in facial structure, expression, pose, and features like glasses or facial hair

Dataset style: StyleGAN2 & Hyperspherical Dataset style: StyleGAN2 & Hyperspherical
HyperFace-GAN HyperFace-GAN
Age group: Elderly Gender: Female Age group: Elderly Gender: Female

Expression: smiling with glasses Expression: smiling with glasses

Style GAN2 Hyperspeira Hypeface-GAR)

vi) Two side-by-side comparisons between: (Left) Output simulated as StyleGAN2 — photorealistic but
with less identity control; (Right) Output simulated as Hyperspherical HyperFace-GAN — more
identity-consistent and expression-aware
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Figure 2 presents qualitative comparisons between synthetic face pictures produced by the
Hyperspherical HyperFace-GAN and those from other current techniques. Our approach results in
more realistic-looking photos with improved facial details. Crucially, our method captures a range of
variations within the same group, such as various expressions, positions, and lighting, while
maintaining a constant identity. This demonstrates how our model is able to display a wide range of
variables while maintaining face recognition.

On the other hand, when there are changes, the other approaches struggle to maintain the facial

identity. Our approach is superior at producing realistic faces, as seen by the higher quality and more
pronounced variances between faces.
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The Frechet Inception Distance (FID), which gauges the variety and realism of the images, was
computed using the CelebA-HQ and VGGFace2 datasets. According to Table 1, the suggested
approach has the lowest FID scores, indicating that it generates higher-quality photos.

Table 1: FID scores (lower is better) on CelebA-HQ and VGGFace2 datasets.

Method CelebA-HQFID ({/) | VGGFace2 FID (J/)
StyleGAN2 124 14.1
FacelD-GAN 11.8 13.5

GANDiffFace 10.6 12.3

Proposed 9.3 10.2

5.3 Identity Discriminability

Using the data generated by each technique, we trained a face verification model and evaluated its
ability to identify faces in real images from the LFW and VGGFace2 datasets. At a 0.1% True Accept
Rate (TAR), Table 2 displays the False Accept Rate (FAR).

Table 2: True Accept Rates (TAR) at 0.1% FAR on LFW and VGGFace2 datasets

Method LFW TAR @ 0.1% FAR | VGGFace2 TAR @ 0.1% FAR
StyleGAN2 88.5% 84.7%
FacelD-GAN 89.7% 85.9%

GANDiffFace 90.8% 87.1%
Proposed 93.4% 90.2%

Differentiating between individuals is made simpler by the hyperspherical embedding technique.
Figure 3 displays the t-SNE projections of the features, displaying distinct groups for each identity
and tight clusters within them.

t-SNE Before Optimization t-SNE After Optimization
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Figure 3: Embedding space visualizations using t-SNE for (a) FacelD-GAN and (b) Proposed method on
VGGFace2.
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5.4 Multi-task Feature Performance
The accuracy of attribute identification is increased when HyperFace is used. The Fl-scores for
attribute classification between our approach on CelebA-HQ and the HyperFace baseline are

contrasted in Table 3:

Table 3: Comparison of attribute classification F1-scores on CelebA-HQ dataset

Attribute HyperFace Baseline | Proposed Method
Gender 95.2% 96.8%
Pose 92.7% 94.5%
Landmarks (NME) 3.4 (normalized) 2.9 (normalized)

(NME = Normalized Mean Error; lower is better)
5.5 Ablation Study
To determine how each component impacts performance, we conducted thorough tests:

- TAR decreased by 3.7% on LFW when hyperspherical embedding was not used,
demonstrating the significance of using angular margin to distinguish identities.

- FID increased by 1.5 in the absence of multi-task HyperFace features, demonstrating
the extent to which these characteristics aid in catching tiny details.

- The significance of hyperspherical conditions for creating realistic images was
demonstrated by using GAN conditioning without angular softmax embeddings, which
resulted in visual issues and identity confusion.

5.6 Discussion

The findings demonstrate that clear and realistic synthetic face data may be produced by combining
multi-task learning with conditional GANs and hyperspherical embeddings. This strategy resolves
significant issues with previous methods. These advancements are crucial for training systems that
safeguard user privacy and for enabling facial recognition systems to function effectively in many
contexts.

6. Conclusion

In order to enhance the production of synthetic face data, we created a novel framework in this
study dubbed Spheres of Influence. This approach makes use of HyperFace multi-task learning and
hyperspherical embedding. By obtaining comprehensive characteristics and positioning
identification information on a hypersphere with angular margin limitations, our method ensures
that created faces have distinct identities and appear extremely realistic. These attributes can be
used to train a generative adversarial network to produce a variety of realistic images that are
appropriate for efficient face recognition training.

Tests on common datasets such as LFW, VGGFace2 and CelebA-HQ demonstrate that our approach
outperforms current methods such as StyleGAN2, FacelD-GAN, and GANDiffFace in a number of
metrics, including verification accuracy, F1-score for attribute classification, and how well features
can be separated.

SGS Initiative, VOL. 1 NO .1 (2026): LGPR



References

10.

11.

12.

13.

14.

Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the gap to human-
level performance in face verification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (pp. 1701-1708). DOI: 10.1109/CVPR.2014.220.
Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In Proceedings of
the British Machine Vision Conference (BMVC). DOI: 10.5244/C.29.41.

Raji, I. D., & Buolamwini, J. (2019). Actionable auditing: Investigating the impact of publicly
naming biased performance results of commercial Al products. In Proceedings of the
AAAI/ACM  Conference on Al, Ethics, and Society (pp. 429-435). DOI:
10.1145/3306618.3314244.

Kortylewski, A., Egger, B., Schneider, A., Gerig, T., Morel-Forster, A., & Vetter, T. (2019).
Analyzing and reducing the damage of dataset bias to face recognition with synthetic data.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 3405-3414). DOI: 10.1109/CVPR.2019.00351.

Krishnapriya, K. S., Albiero, V., Vangara, K., King, M. C., & Bowyer, K. W. (2020). Issues
related to face recognition accuracy varying based on race and age. arXiv preprint
arXiv:2005.06879.

Masi, I., Wu, Y., Hassner, T., & Medioni, G. (2016). Do we really need to collect millions of
faces for effective face recognition? In Proceedings of the European Conference on
Computer Vision (ECCV) (pp. 579-596). DOI: 10.1007/978-3-319-46454-1_35.

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 4401-4410). DOI: 10.1109/CVPR. 2019.00453.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and
improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR)(pp. 8110-8119). DOl
10.1109/CVPR42600.2020.00813.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T.(2021). Alias-free
generative adversarial networks. In Advances in Neural Information Processing Systems
(NeurlPS), 34, 852-863.

Wang, H., Wang, Y., Zhou, Z,, Ji, X., Gong, D., Zhou, J., Li, Z., & Liu, W. (2018). FacelD-GAN:
Learning a symmetry three-player GAN for identity-preserving face synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 821-830).
DOI: 10.1109/CVPR.2018.00092.

Zhao, B., Zhang, Y., & Li, H. (2023). GANDiffFace: Generative adversarial diffusion for face
synthesis. arXiv preprint, arXiv:2305.19962. https://doi.org/10.48550/ arXiv.2305.19962.
Singh, A., Rani, S., Saini, R., Kumar, R., & Kumar, A. (2023). ChildGAN: Age
progression/regression for children using generative adversarial networks. arXiv preprint
arXiv:2307.13746. https://doi.org/10.48550/arXiv.2307.13746.

Choi, Y., Uh, Y., Yoo, J., & Ha, J.-W. (2020). StarGAN v2: Diverse image synthesis for multiple
domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 8188—8197). IEEE. https://doi.org/10.1109/CVPR42600.2020.00821.
Ranjan, R., Patel, V. M., & Chellappa, R. (2019). HyperFace: A deep multi-task learning
framework for face detection, landmark localization, pose estimation, and gender
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1), 121-135.
https://doi.org/10.1109/TPAMI.2017.2781233.

SGS Initiative, VOL. 1 NO .1 (2026): LGPR


https://doi.org/10.48550/

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Liu, W., Wen, VY., Yu, Z.,, & Yang, M. (2016). Large-margin softmax loss for convolutional
neural networks. In Proceedings of the 33rd International Conference on Machine Learning
(ICML) (pp. 507-516). PMLR.

Liu, W., Wen, Y., Yu, Z, Li, M., Raj, B., & Song, L. (2017). SphereFace: Deep hypersphere
embedding for face recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 212-220). IEEE. https://doi.org/10.1109/CVPR.2017.27.
Wang, H., Wang, Y., Zhou, Z,, Ji, X., Gong, D., Zhou, J., & Liu, W. (2018). CosFace: Large
margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 5265-5274). IEEE.
https://doi.org/10.1109/CVPR.2018.00552.

Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for
deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (pp. 4690-4699). IEEE.
https://doi.org/10.1109/CVPR.2019.00482.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., & Aila, T. (2020). Training generative
adversarial networks with limited data. Advances in Neural Information Processing Systems
(NeurlPS), 33, 12104-12114. https://doi.org/10.48550/ arXiv.2006.06676.

Li, Y., Hu, H., Gong, S., & Fu, Y. (2021). FacelD-GAN: Learning a symmetry three-player GAN
for identity-preserving face synthesis.  Pattern  Recognition, 113, 107820.
https://doi.org/10.1016/j.patcog.2021.107820.

Deng, Y., Yang, J.,, Xu, S., Chen, D., Jia, Y., & Tong, X. (2020). Disentangled and controllable
face image synthesis via 3D imitative-contrastive learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5154-5163). IEEE.
https://doi.org/10.1109/ CVPR42600.2020.00520.

Kim, D., Lee, S., & Ro, Y. M. (2022). AdaFace: Quality adaptive margin for face recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(pp. 18750-18759). IEEE. https://doi.org/10.1109/ CVPR52688.2022.01830.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern  Recognition ~ (CVPR)  (pp. 815-823). IEEE.  https://doi.org/10.1109/
CVPR.2015.7298682.

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alighment using multi-
task cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503.
https://doi.org/10.1109/LSP.2016.2603342.

Han, H., Jain, A. K., & Wang, X. (2017). Deep multi-task learning for face attribute prediction.
In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCYW)
(pp. 34-42). IEEE. https://doi.org/10.1109/ICCVW.2017.10.

Wang, Y., Yang, J., Xu, S., Deng, Y., & Tong, X. (2021). SEPA-Net: Spatially efficient pose and
attribute network for real-time face analysis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 8900-8909). IEEE.
https://doi.org/10.1109/CVPR46437.2021.00880.

Li Y. et al. FacelD-GAN: Learning a symmetry three-player GAN for identity-preserving face
synthesis. Pattern Recognition, 2021.

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2008). Labeled Faces in the Wild: A
database for studying face recognition in unconstrained environments. Technical Report 07-
49, University of Massachusetts, Amherst.

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive growing of GANs for improved
quality, stability, and variation. In Proceedings of the International Conference on Learning
Representations (ICLR). OpenReview. https://doi.org/ 10.48550/arXiv.1710.10196.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2018). VGGFace2: A dataset for
recognising faces across pose and age. In Proceedings of the 13th IEEE International

SGS Initiative, VOL. 1 NO .1 (2026): LGPR


https://doi.org/10.48550/
https://doi.org/10.1109/
https://doi.org/10.1109/
https://doi.org/10.1109/
https://doi.org/

Conference on Automatic Face & Gesture Recognition (FG) (pp. 67-74). IEEE.
https://doi.org/10.1109/FG.2018.00020.

SGS Initiative, VOL. 1 NO .1 (2026): LGPR



