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Abstract: Now-a-days, producing high-quality synthetic facial data is crucial to the dependability and 
privacy of face recognition systems. This paper introduces a novel approach that combines 
hyperspherical embedding with HyperFace-based multi-task learning to make artificial images 
appear more realistic and easier to distinguish. This technique makes use of HyperFace to 
simultaneously estimate significant facial characteristics including gender, position, and landmarks, 
which contributes to the creation of more detailed and relevant feature representations. These 
features are then mapped into a hyperspherical space using an angular softmax loss function, which 
aids in highlighting individual differences. These hyperspherical embeddings are then used to train a 
generative adversarial network (GAN), which enables the creation of facial images that maintain the 
same identity but exhibit numerous variances within the same group. The results demonstrate that 
this approach outperforms current methods like StyleGAN2 and FaceID-GAN in terms of face 
verification accuracy, F1-score, and how well the generated embeddings can distinguish between 
different identities when tested on well-known benchmark datasets like LFW, CelebA-HQ, and 
VGGFace2. These findings demonstrate how hyperspherical geometry combined with multi-task 
learning produces extremely realistic and identifiable synthetic face data, which enhances face 
recognition systems. 

Keywords: Synthetic face data, HyperFace, Hyperspherical embedding, Multi-task learning, angular 
softmax loss, Face Recognition, Generative Adversarial Networks (GANs), Identity preserving 

synthesis.  

 

1. Introduction 

Because there are large, varied, and high-quality datasets available, deep learning performs well for 
face recognition [1,2]. However, obtaining and utilizing actual facial data raises serious privacy, 
consent, and ethical issues, particularly given that many nations have stringent regulations regarding 
biometric data [3]. Furthermore, real-world datasets frequently overlook significant variations in 
lighting, ethnicity, placement, and facial expressions, which can skew models and make them less 
effective in various contexts [4,5]. 

Synthetic data has emerged as a superior solution to these issues. Without worrying about privacy, it 
helps produce a wide range of balanced samples [6]. 

Despite this, contemporary techniques for creating synthetic faces struggle to manage facial 
features, maintain the same identity, and balance realistic images. For instance, while models like as 
StyleGAN [7], StyleGAN2 [8], and StyleGAN3 [9] create incredibly lifelike faces, they frequently 
overlook critical identifying characteristics that are essential for accurate face recognition. 
Additionally, these generated faces are less helpful for tasks like recognition and verification due to 
their unclear feature representations [10]. 
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Diffusion models and domain adaptation have been coupled in recent work, such as GANDiffFace 
[11] and ChildGAN [12], to increase diversity and realism in synthetic face generation. Although 
these techniques result in higher visual quality, they still lack robust methods to guarantee that 
identities are distinct in the latent space, which is crucial for maintaining identities in generated 
images [13]. 

To address these issues, this work presents a novel framework with two significant enhancements: 
hyperspherical embedding and HyperFace-based multi-task learning. A model called HyperFace [14] 
can perform several tasks simultaneously, including gender categorization, face identification, 
landmark detection, and posture assessment. It generates intricate feature representations. The 
system places these features in a hyperspherical embedding space using an angular softmax loss 
[15], using angular margins to provide distinct identity boundaries. This expands on earlier studies 
that demonstrated hyperspherical embeddings can enhance models for facial recognition, including 
SphereFace [16], CosFace [17], and ArcFace [18]. 

Lastly, by leveraging the learnt hyperspherical embeddings to direct the GAN, the framework 
produces incredibly realistic face images with a great deal of variance within the same identity while 
maintaining identity accuracy. This approach outperforms other leading methods like StyleGAN2 and 
FaceID-GAN in face verification accuracy, F1-score, and embedding separability, according to tests 
on common datasets including LFW, CelebA-HQ, and VGGFace2. 

The study's key findings are:  

- Developing a novel method for creating synthetic faces that maintain identities by fusing 
HyperFace's multi-task features with hyperspherical embedding. 

- Using hyperspherical embeddings to direct the GAN process ensures that generated faces 
are easily recognizable. 

- Outperforming existing techniques in common tests of facial recognition. 

This is how the remainder of the paper is structured. In Section 2, relevant studies on synthetic face 
generation, hyperspherical learning, and multitask learning are reviewed. The suggested strategy is 
described in Section 3. Details of implementation are provided in Section 4. The findings and analysis 
are shown in Section 5. The results are discussed in Section 6, and the paper is concluded in Section 
7. 

2. Related Work 

2.1 Synthetic Face Generation 

The creation of synthetic faces has improved significantly with the development of deep generative 
models [19], particularly GANs. Models like StyleGAN and its variants, like StyleGAN2 and StyleGAN3, 
are very good at producing realistic, high-resolution face images; they use adaptive normalization 
and a style-based structure to separate high-level features from random changes, allowing for fine 
control over the output. However, they frequently concentrate on making the images appear 
realistic rather than maintaining identity consistency or incorporating features that are crucial for 
identification tasks. 
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Certain techniques, such as FaceID-GAN [20], use feature extractors to maintain identity consistency 
throughout GAN training. However, they frequently find it difficult to strike a balance between the 
quality of the image and the precision of the identity embedding, which might result in artificial data 
that is useless for verification or identification. 

More recent techniques, such GANDiffFace and ChildGAN, have investigated the use of diffusion 
models and domain adaptation to increase the consistency and variety of generated faces. 

Others, such as DiscoFaceGAN, concentrate on isolating facial expressions from identity in order to 
enable controlled editing. Despite these advancements, a clear connection between identity 
embeddings and visual realism remains challenging. 

Due to their inability to distinguish distinct classes in the embedding space, many current 
approaches are insufficient for training trustworthy face recognition systems [21]. 

Consequently, frameworks that integrate discriminative learning with generative modeling are 

required to provide usable and realistic synthetic face data. 

2.2 Hyperspherical Learning 

By positioning embeddings on a unit hypersphere and utilizing angular margins, hyperspherical 
learning has become a popular method for enhancing feature discrimination. In order to improve 
the distinction between various classes in face recognition, SphereFace was the first to employ 
angular softmax loss. 

Later techniques, such as CosFace and ArcFace, used additive cosine and angular margin losses, 
respectively, to enhance training and performance. 

By resolving training issues and providing a unified approach that works well with current margin-
based losses, SphereFace-R greatly enhanced hyperspherical embeddings. 

Adaptive margins are used in more recent developments, such as AdaFace [22], to enhance 
performance in situations where stance or lighting varies. 

Because of this, hyperspherical learning has become a crucial component of contemporary face 
recognition systems, particularly for open-set recognition and verification where distinct class 
separation is essential [23]. Although it is mostly employed in discriminative tasks, its application to 
generative models for identity-preserving synthesis has not yet been investigated. 

By employing hyperspherical embeddings to direct GAN-based face synthesis, this work attempts to 

remedy that. 

2.3 Multi-task Learning in Face Analysis 

By utilizing the links between several tasks to generate shared representations that enhance 
generalization and strengthen the models, multi-task learning (MTL) has demonstrated great 
promise in face analysis. 
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One prominent example of this is HyperFace, which combines face identification, landmark 
localization, posture estimation, and gender prediction into a single deep learning framework to 
provide comprehensive and detailed feature embeddings. 

Similar to this, MTCNN [24] combines face detection and alignment into a cascaded framework to 

attain high accuracy and quick performance. 

Expanding MTL to cover several face attributes, DMTL [25] demonstrates the advantages of shared 
learning for related attribute predictions. 

By including posture and expression estimates into MTL frameworks, recent initiatives such as SEPA-
Net [26] enhance recognition under various settings. 

Despite these achievements, existing MTL techniques don't leverage the learnt features for 
generation and instead concentrate on discriminative tasks. 

In order to close that gap, this work combines HyperFace characteristics with hyperspherical learning 

to direct GAN synthesis, producing artificial face images that are consistent in identity and lifelike. 

3. Proposed Methodology 

A Combined HyperFace and Hyperspherical Learning Framework is presented in this research. It 
creates realistic and identity-consistent facial images by combining multi-task feature extraction with 
discriminative hyperspherical embeddings. 

The procedure consists of three basic steps: first, conditional picture synthesis utilizing a GAN-based 
architecture; second, projecting the images into a hyperspherical embedding space; and third, multi-
task feature extraction using HyperFace. 

3.1 System Architecture Overview 

A broad overview of the proposed framework is shown in Figure 1.The structure consists of the 
following:  

• HyperFace Module: This component receives input photographs and gathers a lot of facial 
information, including gender, head posture, and landmarks, to create detailed feature 
representations. 

• Hyperspherical Embedding Layer: This layer uses techniques like ArcFace or Angular Softmax 
to transform the gathered features into a unit hypersphere. This enhances the distinction 
between various classes and helps maintain crucial identity facts. 

• The Conditional GAN Module uses the hyperspherical embeddings as a guide to produce 
realistic, high-quality fake face images that are consistent and exhibit variation within the 
same class [27]. 

3.2 Multi-task Feature Extraction 

We employ HyperFace to estimate many face-related characteristics simultaneously in order to 
obtain a wider range of features and support the model's performance in various scenarios. 

HyperFace generates a collection of features such as these from an input image:     
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                                         F = {𝑓𝑙𝑎𝑛𝑑  , 𝑓𝑝𝑜𝑠𝑒, 𝑓𝑔𝑒𝑛𝑑𝑒𝑟} ……………………………………………..….…. (1) 

In this case, face landmarks, facial pose, and gender are represented by the variables fland , fpose and 

fgender, respectively. 

 

 

Figure 1: Block diagram of the proposed Combined HyperFace and Hyperspherical Learning Approach 

Next, a single vector is created by combining these features: 

                                                 fcombined ∈ ℝd  ………………………………….……………………………. (2) 

The structure and meaning required to maintain identity consistency are both included in this 
extensive embedding. 

3.3 Hyperspherical Embedding Layer 

The aggregated feature vector is normalized and positioned on a unit hypersphere in order to 
distinguish distinct identities: 

                                          f̃ = 
f combined

||fcombined||2    ………………………………………………………..……. (3) 

For classification, we employ a loss function called ArcFace that uses angular margins [18]: 

                             ℒarc = −log 
es.cos (θy+m)

es.cos (θy+m)+ ∑ e
s.cos (θj)

j≠y

 ………………………………………….……………… (4) 
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where m is the angular margin, s is a scaling factor, and θj is the angle between the embedding and 
class j. This loss makes it easier to distinguish between distinct classes, which are crucial for 

producing photos that accurately depict the subject.   . 

3.4 Conditional GAN for Image Synthesis 

To generate images, we employ a modified version of StyleGAN2.The generator creates realistic 
facial images (X̂) by combining a latent noise vector z with a hyperspherical embedding f.̃ These 
images are then sampled from the model:  

                                                              X ̂~ p(X|f)̅  ………………………………………………………..…………………(5) 

To ensure that the generated faces are accurate and appear real, the training aim integrates identity 
loss (ℒid), adversarial loss (ℒadv), and perceptual loss (ℒperc):  

                      ℒtotal = λadv ℒadv + λid ℒid+ λperc ℒperc  ………………………………………………….. (6) 

This guarantees that the faces are realistic and have the appropriate identity traits. [27] 

4. Implementation Setup 

4.1 Datasets 

The framework was tested on three datasets: 

• Labeled Faces in the Wild (LFW) [28]: More than 13,000 images from the internet are 
included in this. The images, which depict faces in various lighting and situations, are 
primarily used to assess the effectiveness of verification systems. 

• CelebA-HQ [29]: This excellent CelebA version aids in learning many activities. It has 30,000 
1024x1024 pixel photos with 40 distinct kinds of labels. 

• VGGFace2 [30]: This large dataset contains almost 3.3 million photos from 9,131 individuals. 
There is a great deal of diversity in terms of people's ages, races, and positions. 

4.2 Hardware and Software Environment 

The testing computer was equipped with an NVIDIA Tesla V100 graphics card with 32 GB of memory, 
an Intel Xeon Gold 6226R processor working at 2.9 GHz, 256 GB of memory, and the Ubuntu 20.04 
LTS operating system. PyTorch 1.11 and CUDA 11.3 with Python 3.8 were used to create the models. 
NumPy, OpenCV, and scikit-learn were other tools utilized. 

4.3 Model Architectures 

• HyperFace Multi-task Network: This network was modified to function on particular 
datasets after being trained on CelebA. It picks up information about landmarks, gender, and 
facial position. The original HyperFace model serves as its foundation. 

• Hyperspherical Embedding Module: This component places data into a hypersphere space 
using Angular Softmax loss. The spot has a size of 512. 

• Conditional GAN: This model is an adaptation of StyleGAN2. It is equipped with a 
discriminator and a generator. To guarantee that the images produced have the correct 
identity, it blends embedding vectors with random noise. 
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4.4 Training Procedures 

• HyperFace Training: Using a batch size of 64, the model was trained for 50 cycles. The Adam 
optimizer was employed with beta values of 0.9 and 0.999 and a learning rate of 0.0001. 

• Hyperspherical Embedding Optimization: During collaborative training with HyperFace, a 
combination of multi-task losses and Angular Softmax loss was employed. The weight of the 
losses was equal. 

• Conditional GAN Training: Using alternating optimization with the Adam optimizer, the 
generator and discriminator were trained for 100 rounds. A learning rate of 0.0002 was 
used. 

• Data Augmentation: Methods such as cropping, randomly flipping images from left to right, 
and color-changing were used to improve the model's generalization.4.5 Evaluation Metrics 

These methods were used to test the framework: 

• Verification Accuracy: This examined how well the framework performs by looking at the 
True Accept Rate (TAR) at various False Accept Rates (FAR) on the LFW and VGGFace2 
datasets. 

• F1-Score: This gauges how well the model extracts features for various tasks, such as gender. 

• Frechet Inception Distance (FID): This measures the variety and quality of the produced 
images. 

• Embedding Separability: This gauges the degree of separation between individuals by 

calculating the average angle between their locations in the hypersphere. 

5. Experimental Results and Analysis 

This section demonstrates the effectiveness of the Combined HyperFace and Hyperspherical 
Learning Framework on a number of common face datasets.  

By evaluating the framework under various conditions, we examine each component's performance, 
the caliber of the output, its ability to distinguish between individuals, and how it manages various 

duties. 

5.1 Evaluation on Benchmark Datasets 

We compared our approach with other leading models such as StyleGAN2, FaceID-GAN, and 
GANDiffFace using three popular face datasets: LFW, CelebA-HQ, and VGGFace2. 

These comparisons are primarily concerned with the overall quality of the faces produced, the 

variety of the images, and the performance of the generated photos in face verification. 

5.2 Visual Quality and Diversity 

 

 

 

 

Dataset style: LFW 
Age group: Middle-aged  
Gender: Male 
Expression: Neutral 

 

Dataset style: LFW 
Age group: Middle-aged  
Gender: Male 
Expression: Neutral 
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Figure 2:  i) Two synthetic face images representing a middle-aged male with a neutral expression, 
styled to match the LFW dataset's casual and unconstrained look 

  

 

 

 

 

 

 

ii) Two synthetic face images in the CelebA-HQ style, showcasing side-by-side variations of a young 
adult male with both smiling and neutral expressions. 

 

 

 

 

 

 

 

 

iii) Two synthetic face images of an elderly female, smiling and wearing glasses, styled to match the 
VGGFace2 dataset — which emphasizes real-world diversity in lighting, pose, and background 

 

 

 

 

 

 

Dataset style: CelebA-HQ 
Age group: Young Adult  
Gender: Male 
Expression: smiling 

 

Dataset style: CelebA-HQ 
Age group: Young Adult 
Gender: Male 
Expression: smiling 

 

Dataset style: VGGFace2 
Age group: Elderly  
Gender: Female 
Expression: smiling with glasses 

 

 

Dataset style: VGGFace2 
Age group: Elderly 
Gender: Female 
Expression: smiling with glasses 

 

 

Dataset style: VGGFace2 
Age group: Elderly  
Gender: Female 
Expression: Neutral or smiling with glasses 

 

 

Dataset style: VGGFace2 
Age group: Elderly  
Gender: Female 
Expression: Neutral or smiling with glasses 
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iv) Two multi-expression panels of the same elderly female identity, showing smiling, neutral, and 
surprised expressions 

 

 

 

 

 

 

 

 

 

v) Two multi-identity panels of elderly male faces, each representing a distinct identity with variation 
in facial structure, expression, pose, and features like glasses or facial hair 

 

 

 

 

 

 

 

 

 

vi) Two side-by-side comparisons between: (Left) Output simulated as StyleGAN2 – photorealistic but 
with less identity control; (Right) Output simulated as Hyperspherical HyperFace-GAN – more 

identity-consistent and expression-aware 

Dataset style: VGGFace2 
Age group: Elderly           Gender: Male 
Expression: Neutral or smiling with glasses 

    

Dataset style: VGGFace2 
Age group: Elderly            Gender: Male 
Expression: Neutral or smiling with glasses 

     

Dataset style: StyleGAN2 & Hyperspherical 
HyperFace-GAN 
Age group: Elderly        Gender: Female 
Expression: smiling with glasses 

     

Dataset style: StyleGAN2 & Hyperspherical 
HyperFace-GAN 
Age group: Elderly    Gender: Female 
Expression: smiling with glasses 
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Figure 2 presents qualitative comparisons between synthetic face pictures produced by the 
Hyperspherical HyperFace-GAN and those from other current techniques. Our approach results in 
more realistic-looking photos with improved facial details. Crucially, our method captures a range of 
variations within the same group, such as various expressions, positions, and lighting, while 
maintaining a constant identity. This demonstrates how our model is able to display a wide range of 
variables while maintaining face recognition.  

On the other hand, when there are changes, the other approaches struggle to maintain the facial 
identity. Our approach is superior at producing realistic faces, as seen by the higher quality and more 
pronounced variances between faces. 
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The Frechet Inception Distance (FID), which gauges the variety and realism of the images, was 
computed using the CelebA-HQ and VGGFace2 datasets. According to Table 1, the suggested 
approach has the lowest FID scores, indicating that it generates higher-quality photos. 

Table 1: FID scores (lower is better) on CelebA-HQ and VGGFace2 datasets. 

Method CelebA-HQ FID (↓) VGGFace2 FID (↓) 

StyleGAN2 12.4 14.1 

FaceID-GAN 11.8 13.5 

GANDiffFace 10.6 12.3 

Proposed 9.3 10.2 

5.3 Identity Discriminability 

Using the data generated by each technique, we trained a face verification model and evaluated its 
ability to identify faces in real images from the LFW and VGGFace2 datasets. At a 0.1% True Accept 
Rate (TAR), Table 2 displays the False Accept Rate (FAR). 
 

Table 2: True Accept Rates (TAR) at 0.1% FAR on LFW and VGGFace2 datasets 

Method LFW TAR @ 0.1% FAR VGGFace2 TAR @ 0.1% FAR 

StyleGAN2 88.5% 84.7% 

FaceID-GAN 89.7% 85.9% 

GANDiffFace 90.8% 87.1% 

Proposed 93.4% 90.2% 

Differentiating between individuals is made simpler by the hyperspherical embedding technique. 
Figure 3 displays the t-SNE projections of the features, displaying distinct groups for each identity 
and tight clusters within them. 

 

Figure 3: Embedding space visualizations using t-SNE for (a) FaceID-GAN and (b) Proposed method on 

VGGFace2. 

 

 



SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

 
 

5.4 Multi-task Feature Performance 

The accuracy of attribute identification is increased when HyperFace is used. The F1-scores for 
attribute classification between our approach on CelebA-HQ and the HyperFace baseline are 
contrasted in Table 3: 

Table 3: Comparison of attribute classification F1-scores on CelebA-HQ dataset 

Attribute HyperFace Baseline Proposed Method 

Gender 95.2% 96.8% 

Pose 92.7% 94.5% 

Landmarks (NME) 3.4 (normalized) 2.9 (normalized) 

(NME = Normalized Mean Error; lower is better) 

5.5 Ablation Study 

To determine how each component impacts performance, we conducted thorough tests: 

- TAR decreased by 3.7% on LFW when hyperspherical embedding was not used, 
demonstrating the significance of using angular margin to distinguish identities. 

- FID increased by 1.5 in the absence of multi-task HyperFace features, demonstrating 
the extent to which these characteristics aid in catching tiny details. 

- The significance of hyperspherical conditions for creating realistic images was 
demonstrated by using GAN conditioning without angular softmax embeddings, which 
resulted in visual issues and identity confusion. 

5.6 Discussion 

The findings demonstrate that clear and realistic synthetic face data may be produced by combining 
multi-task learning with conditional GANs and hyperspherical embeddings. This strategy resolves 
significant issues with previous methods. These advancements are crucial for training systems that 
safeguard user privacy and for enabling facial recognition systems to function effectively in many 
contexts. 

6. Conclusion 

In order to enhance the production of synthetic face data, we created a novel framework in this 
study dubbed Spheres of Influence. This approach makes use of HyperFace multi-task learning and 
hyperspherical embedding. By obtaining comprehensive characteristics and positioning 
identification information on a hypersphere with angular margin limitations, our method ensures 
that created faces have distinct identities and appear extremely realistic. These attributes can be 
used to train a generative adversarial network to produce a variety of realistic images that are 
appropriate for efficient face recognition training. 

Tests on common datasets such as LFW, VGGFace2 and CelebA-HQ demonstrate that our approach 
outperforms current methods such as StyleGAN2, FaceID-GAN, and GANDiffFace in a number of 
metrics, including verification accuracy, F1-score for attribute classification, and how well features 

can be separated. 
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