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Abstract: Fog computing has emerged as an effective paradigm for modern latency-sensitive, resource-

intensive and deadline-critical applications. However, for efficient scheduling of dynamic tasks and 

managing resources, traditional centralized approach poses significant issues. This article presents a 

systematic review of the literature on adaptive and autonomous scheduling algorithms in Fog computing 

environment. The challenges of energy efficiency, resource utilization, cost and latency have been 

addressed in this study. The key contributions of this work provide helpful insights for the researchers in 

terms of designing robust and sustainable systems that are autonomous and can adapt to the dynamic 

nature of incoming workload for the modern Fog-Cloud environments. By identifying key limitations, this 

article paves the way for future research in terms of autonomous and adaptive scheduling frameworks 

that are lightweight yet effective in nature. 
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Introduction 

Fog computing has emerged as an important paradigm in the bridging of the centralized Cloud system and 

the edge devices. Fog computing allows for the processing of information closer to its source, hence 

solving issues related to high latency, limited scalability, and energy inefficiency [1]. Such attributes make 

Fog computing indispensable for applications requiring low latency, such as healthcare monitoring, 

autonomous vehicles, and industrial IoT systems [2]. However, this dynamic and resource-limited nature 

of Fog environments contributes to the increasing demand for developing novel scheduling mechanisms 

which could bring better task allocation and exploitation of resources. Figure 1 shows the basic 

architecture of IoT-Fog-Cloud paradigm. 

Next-generation Fog computing environments operate in highly dynamic and heterogeneous IoT-Fog-

Cloud environments, where there is rapid fluctuation of workloads, frequent joining or failure of 

computational nodes, and network conditions such as latency and bandwidth vary unpredictably. 

Traditional centralized scheduling approaches cannot cope with these conditions because they lack the 

ability to make decisions in real-time variations for availability of resources, system state and application 

sensitivity. Many emerging applications such as healthcare, autonomous vehicles, industrial automation, 

AR/VR, etc. demand low latency and hard real-time responses, which cannot be guaranteed if tasks are 

offloaded to Cloud servers present at a distant place. 

Moreover, Fog nodes differ widely in computational power, computational memory, computational 

energy capacity and hardware requirements. Hence, it is essential to have a scheduler that can 

autonomously assign tasks to the most suitable nodes while reducing energy consumption and latency. 
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As the number of IoT devices is growing at a rapid rate, centralized control has become a bottleneck and 

a single point of failure, reinforcing the need for decentralized, self-optimizing scheduling mechanisms. 

Additionally, scheduling in a Fog environment often includes addressing multiple objectives such as 

maximizing utilization of resources while reducing latency, energy consumption and cost. Managing these 

objectives simultaneously requires real-time adaptive decision making rather than fixed rules. 

Autonomous and adaptive schedulers continuously monitor system feedback, learn from past decisions, 

and proactively respond to failures or performance degradation, reducing manual interactions [3]. But 

even now, several challenges do exist in terms of energy efficiency and latency reduction. There is still 

room for enhancing real-time responsiveness for many critical applications, such as healthcare systems 

[4]. 

 
Figure 1. Basic Architecture of IoT-Fog-Cloud Paradigm. 

Related work 

Li et. al. [5] investigated a computing resource scheduling problem in edge-assisted autonomous driving 

systems where vehicles periodically offload sensor data (localization, obstacle detection, tracking) to a 

nearby edge server. The authors define a new metric called Age-of-Result (AoR), representing the distance 

travelled since the last useful computation update for recording processing delays and vehicle mobility. 

To achieve this, the paper models the scheduling problem as a Restless Multi-Armed Bandit (RMAB) and 

derives a Whittle index that quantifies the priority of scheduling each vehicle’s task. The authors evaluate 

both synchronous and asynchronous sensing/offloading patterns, and simulation results (including on a 

real Didi driving dataset) show significant reductions in AoR compared to baseline policies like Highest-

AoR-first and Round-Robin. However, the work optimizes only Age-of-Result (AoR) without considering 

other crucial QoS dimensions such as latency, energy consumption, resource utilization, computation cost, 

etc. The approach further introduces computational overhead, requiring long prediction windows and 

heavy neural-network training, which is impractical for lightweight, resource-limited Fog nodes. 

Lin et. al. [6] introduced a metaheuristic-based framework called SPP-DEA to address the Service 

Placement Problem (SPP) in Fog environments, which is a NP-hard problem. To manage this degree of 

complexity, the authors modified the Differential Evolution Algorithm (DEA) by incorporating a shared 

parallel architecture and integrating it into the MADE-k autonomous planning model. While this approach 

effectively applies DEA for microservice placement, the approach lacks continuous adaptability as the 
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decisions regarding placement are done once per time period, assuming stable task arrival rate and fixed 

deadlines. Additionally, the article does not incorporate predictive intelligence, limiting the use cases in 

real-world IoT-Fog-Cloud scenarios. 

Table 1. Related Literature Review. 

Reference & 
Year 

Approach Nature of work Limitations 

Li et. al., 2021 
[5] 

RMAB, Whittle 
Index, DQN, 
LSTM, SSA 

Autonomous and 
Adaptive Scheduling 

• Homogeneous type tasks are 
considered 

• Does not consider delay modeling 

Lin et. al., 
2023 [6] 

Parallel DE 
(SPP-DEA) 

Task 
Optimization/Resource 

Placement 

• Lacks runtime adaptation 

• Decision making is centralized. 

Choppara et. 
al., 2025 [7] 

DDPG, Actor–
Critic 

Adaptive Task 
Scheduling/Resource 

Optimization 

• High computational and training 
complexity. 

• Does not consider real-world 
dataset for validation. 

• Does not consider cost of task 
migration. 

Choppara et. 
al., 2025 [8] 

FedDQN, K-
Means 

Autonomous & 
Decentralized 

Scheduling 

• High communication overhead. 

• Does not consider real-world 
dataset for validation. 

Nagabushnam 
et. al., 2025 

[9] 

Multi-Agent PPO Adaptive & Multi-
Agent Optimization 

• Does not consider real-world 
dataset for validation. 

• Does not consider cost of task 
migration. 

Jin et. al., 
2025 [10] 

3C Co-Design 
Framework 

Autonomous & 
Resource-Oriented 

Architecture 

• Does not consider scheduling 
algorithm and empirical validation. 

• Lacks in effective autonomous 
scheduling approach. 

Choppara and Mangalampalli [7] proposed a Resource Adaptive Automated Task Scheduling 

framework for Fog computing using the Deep Deterministic Policy Gradient (DDPG) reinforcement 

learning algorithm. Fog nodes operate under limited and fluctuating resources, making static or heuristic 

scheduling ineffective. To address this, the framework dynamically schedules Fog tasks by learning 

optimal decisions through continuous state–action interactions. Although the paper presents a strong 

DDPG-based resource-adaptive scheduling framework, the framework assumes complete visibility of 

system states, including exact resource availability, dependency graphs, and accurate task parameters, 

which is often unrealistic in real Fog deployments. While the authors incorporate three scheduling types, 

the framework does not include inter-node coordination. 

Choppara and Mangalampalli [8] proposed a comprehensive vendor-selection framework based on 

Multi-Criteria Decision-Making (MCDM) techniques to rank and select optimal suppliers in supply-chain 

environments. The paper integrates AHP (Analytical Hierarchy Process) for determining criterion weights 

and TOPSIS for ranking vendors based on their closeness to an ideal alternative, ensuring both subjective 

expert input and objective distance-based evaluation are considered. However, the framework is largely 
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static, assuming that vendor attributes (delivery time, reliability, quality, cost) remain constant over time, 

while in practice these parameters fluctuate dynamically due to multiple reasons. The model also depends 

heavily on manual expert assessments for AHP weighting, making it subjective and sensitive to human 

bias. Additionally, the method does not incorporate real-time monitoring, adaptive re-evaluation, or 

automated feedback loops, meaning vendor rankings cannot update autonomously when performance 

changes. 

Nagabushnam et. al. [9] proposed a Fog-Adaptive Multi-Agent Scheduling Optimization framework 

called FAMASO for dynamic, heterogeneous Fog–Cloud environments. The proposed approach combines 

Earliest Deadline First (EDF) with multi-agent Reinforcement Learning (RL), using PPO-based recurrent 

neural networks (PPO-RNN) to model temporal patterns in task arrivals and adapt scheduling decisions in 

real time. However, the framework suffers from high computational complexity. 

Jin et. al. [10] presented Fog-Cloud automation as a transformative reference architecture for building 

fully autonomous Industrial Cyber-Physical Systems (ICPS). The authors suggested a 3C co-design 

framework that combines communication, computing and control simultaneously while introducing a 

Fog-Cloud automation prototype. However, the work remains largely architectural and conceptual, 

without presenting concrete algorithms, quantitative evaluations, or empirical benchmarks validating the 

proposed model. 

Through autonomous and adaptive scheduling, the above limitations can be addressed directly by 

considering multi-objective, context-aware, and self-optimizing resource management across the IoT-Fog-

Cloud environment. Rather optimizing a single objective, these schedulers simultaneously consider 

latency, energy efficiency, cost, resource utilization, etc., that proves to be more practical in nature. 

Moreover, they incorporate energy-aware and cost-aware policies, reducing unnecessary 

communication, energy consumption, thus improving efficiency and robustness. Table 1 presents a review 

of the related earlier work carried out in this field. 

Research Questions 

The research questions focus on essential choices in terms of techniques used, objective function defined, 

integration of Fog-Cloud environment and autonomous scheduling. 

1. RQ1: What techniques can ensure adaptability and robustness of the scheduling framework under 

uncertain or adversarial conditions? 

2. RQ2: How can Deep Reinforcement Learning (DRL) be leveraged to enable autonomous and real-time 

scheduling in highly dynamic Fog environments? 

3. RQ3: How can multi-objective optimization (latency, energy, cost, reliability) be integrated into the 

DRL-based scheduling framework? 

4. RQ4: How does the integration of Cloud assistance enhance the overall latency–energy trade-off and 

scalability autonomous systems under heterogeneous network conditions? 

5. RQ5: How can the proposed autonomous scheduling framework be applied and validated in real-

world use cases (e.g., smart cities, healthcare IoT, and autonomous vehicles)? 

 

Key Contribution 
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The main contributions of this work can be summarized as follows: 

1. An extensive review of earlier literature works (2021–2025) is carried out focusing on adaptive and 

autonomous scheduling Fog-Cloud paradigm, systematically classifying the review work in terms of 

their contributions, approach, nature of work, their strengths and limitations. 

2. The existing limitations have been highlighted that include homogeneous nature of tasks considered, 

lack in real-time decision making, adaptation to real-time workload, etc. 

3. Table 1 presents a structured comparative table that shows various approaches which makes it clear 

that further research can address the highlighted limitations. 

4. Formulated some research questions that focuses on gathering specific information about 

techniques used, objective function defined, integration of Fog-Cloud environment and autonomous 

scheduling. 

Conclusions 

This article presents a systematic review of autonomous and adaptive scheduling approaches for the Fog-

Cloud paradigm focusing on latency, energy consumption, resource utilization and cost. Through this 

article we can conclude the following points while this also paves a way for various future research which 

can be carried out: 

1. Due to the demanding nature of the modern workload, the centralized nature of the traditional Cloud 

approach is not suitable. 

2. Through this survey, it can be considered that autonomous and adaptive scheduling can be 

implemented to address the limitations that the earlier approaches face in terms of latency, energy 

consumption, resource utilization and cost. 

3. This review also clearly shows that most of the earlier research was carried out using synthetic 

datasets rather than any real-world dataset. 

4. Further research can be carried out by focusing on lightweight adaptive and autonomous schedulers 

which can be effective in reducing latency, energy consumption and cost while maximizing the 

resource utilization. 
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