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Abstract: Breast cancer remains a leading cause of mortality among women worldwide, and accurate,
early diagnosis is critical for effective treatment planning. Traditional diagnostic workflows often rely on
isolated imaging modalities—such as mammography, ultrasound, or histopathology—each offering
partial insights into tumor morphology and progression. This fragmentation limits diagnostic precision and
hampers clinical decision-making. Recent advances in artificial intelligence (Al) have demonstrated
immense potential to unify heterogeneous imaging data, enabling multimodal learning systems that
bridge radiological and microscopic domains. This review synthesizes current research trends in Al-driven
integration of imaging modalities for breast cancer diagnosis, focusing on deep learning architectures,
cross-modal feature fusion, and explainable Al frameworks. Significant findings highlight that multimodal
Al models consistently outperform unimodal counterparts in diagnostic accuracy, lesion characterization,
and prognostic prediction. Moreover, the inclusion of histopathological and radiological correlations
enhances interpretability and clinical trust. The review identifies key challenges related to data
heterogeneity, standardization, and generalizability across populations. Applications of this integrative
approach span computer-aided diagnostics, personalized oncology, and telepathology solutions for low-
resource settings. The study concludes that Al-driven multimodal fusion represents a transformative
pathway toward comprehensive, explainable, and population-relevant breast cancer diagnostics.
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Introduction
Breast cancer remains the most frequently diagnosed malignancy among women worldwide and
constitutes a major global public health challenge. According to recent global health estimates, breast
cancer accounts for nearly one-quarter of all female cancer cases, with incidence rates continuing to rise
across both developed and developing nations. Projections indicate that approximately 30 million new
cases are expected to be reported by 2030, underscoring the urgency for effective diagnostic and
screening strategies. Early-stage detection significantly improves patient outcomes, with survival rates
exceeding 90% when malignancies are identified at initial stages; however, these rates decline sharply
when diagnosis is delayed. Consequently, accurate, timely, and reliable diagnostic pathways are critical
for reducing mortality and improving quality of life among affected patients.

Conventional breast cancer diagnosis follows a multistep clinical workflow involving radiological
imaging, tissue sampling, and pathological examination. Mammography remains the primary screening
modality due to its widespread availability and proven efficacy in reducing mortality through early lesion
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detection. Ultrasound is frequently used as a complementary modality, particularly for women with dense
breast tissue where mammography sensitivity is reduced. In suspected cases, tissue-based examinations
such as fine needle aspiration cytology (FNAC), core needle biopsy, and subsequent histopathological
analysis using hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) provide definitive
diagnostic confirmation. Each of these modalities offers distinct yet complementary information
regarding tumor morphology, tissue architecture, and molecular characteristics.

Despite their clinical utility, individual diagnostic modalities suffer from inherent limitations.
Mammography, while cost-effective and widely accessible, often yields false positives and reduced
sensitivity in dense breast tissue and exposes patients to low-level ionizing radiation. Ultrasound is non-
invasive and radiation-free but is highly operator-dependent and susceptible to variability in image
quality. Histopathology offers high-resolution visualization of tissue structures and remains the diagnostic
gold standard; however, it requires expensive equipment, expert interpretation, and substantial
computational and storage resources for whole-slide images. These limitations are further compounded
when modalities are used in isolation, leading to fragmented diagnostic insights and potential diagnostic
inconsistencies.

A significant drawback of the conventional diagnostic pathway is its heavy reliance on manual
interpretation. Radiological and pathological assessments are time-consuming and prone to inter- and
intra-observer variability, which can affect diagnostic consistency and reproducibility. Increasing patient
volumes and the growing complexity of imaging data place additional strain on healthcare systems,
particularly in low-resource settings where access to expert radiologists and pathologists is limited. As a
result, delays in diagnosis and treatment initiation remain common, adversely affecting patient outcomes.
These challenges highlight the need for automated, standardized, and scalable diagnostic solutions
capable of integrating heterogeneous data sources into a unified clinical framework.

In recent years, advances in artificial intelligence (Al) and deep learning (DL) have demonstrated
substantial promise in transforming medical image analysis and cancer diagnostics. Convolutional neural
networks (CNNs), transfer learning models, and hybrid deep learning architectures have achieved
remarkable performance in breast cancer detection across individual imaging modalities, often surpassing
traditional machine learning approaches. Al-driven systems offer the ability to learn hierarchical and
discriminative features directly from raw imaging data, reducing reliance on handcrafted features and
improving diagnostic accuracy. Furthermore, these models provide opportunities for automation,
consistency, and rapid analysis, addressing several limitations of manual workflows.

However, the majority of existing Al-based diagnostic systems remain unimodal, focusing on a single
imaging modality such as mammography, ultrasound, or histopathology. While these approaches have
yielded encouraging results, they fail to capture the full spectrum of tumor heterogeneity observable
across different diagnostic stages. Breast cancer is a complex disease characterized by multiscale and
multimodal manifestations—from macroscopic radiological patterns to microscopic cellular structures—
necessitating a more holistic diagnostic approach. Limited efforts have been made to effectively fuse
features across modalities, and standardized multimodal frameworks remain largely absent from the
literature.

The lack of integrated multimodal diagnostic systems presents a critical research gap. Current studies
often employ non-standardized datasets, heterogeneous preprocessing pipelines, and modality-specific
architectures, hindering generalizability and clinical translation. Moreover, challenges such as data
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imbalance, domain shift across populations, and limited clinical validation persist. Explainability and
interpretability—key requirements for clinical trust and adoption—are frequently overlooked in existing
models. These limitations emphasize the need for robust multimodal Al frameworks that not only achieve
high diagnostic performance but also align with real-world clinical workflows.

In this context, the central objective of this research is to develop a multimodal Al-assisted architecture
for breast cancer diagnosis that integrates multiple imaging modalities, including mammography,
ultrasound, and histopathology. By bridging radiology and microscopy through advanced Al-driven feature
extraction and fusion techniques, the proposed framework aims to deliver a comprehensive, automated,
and standardized diagnostic solution. Such an approach seeks to minimize manual variability, reduce
diagnostic delays, and enhance accuracy across diverse clinical settings.

This study addresses several critical challenges in contemporary breast cancer care, including
variability in expert interpretation, limited healthcare resources, and the growing demand for early and
reliable diagnosis. By leveraging multimodal data and state-of-the-art Al methodologies, the proposed
system aspires to streamline the diagnostic pathway and support clinical decision-making. Ultimately, the
integration of multimodal imaging within a unified Al framework has the potential to advance precision
oncology, improve patient outcomes, and facilitate scalable breast cancer screening and diagnosis in both
high- and low-resource environments.

BC Screening Techniques

A range of medical imaging modalities is employed in the screening, diagnosis, monitoring, and treatment
planning of breast cancer (BC) to detect abnormalities and characterize tumor properties. Breast cancer
screening integrates multiple imaging techniques to identify pathological changes in breast tissue at an
early stage, thereby improving prognosis and reducing disease-related mortality. With the growing
adoption of machine learning (ML) and deep learning (DL) approaches in medical imaging, these
modalities have become central to the development of automated and computer-aided diagnostic
systems. This section reviews the primary imaging modalities used in BC screening and diagnosis,
highlighting their clinical relevance and applicability in Al-driven frameworks.

Mammography

Mammography is one of the most widely utilized imaging modalities for breast cancer detection,
employing low-dose X-rays to generate detailed images of breast tissue. It plays a crucial role in early
screening, enabling the identification of subtle abnormalities that may not be clinically palpable. Large-
scale screening programs have demonstrated that routine mammaography significantly reduces breast
cancer mortality by facilitating early diagnosis. Mammography serves both screening and diagnostic
purposes. Screening mammograms are used for asymptomatic individuals to detect early signs of
malignancy, whereas diagnostic mammograms provide a more detailed evaluation of suspicious findings
such as palpable lumps, breast pain, or abnormal nipple discharge, often following an abnormal screening
result. Despite its effectiveness, mammography may exhibit reduced sensitivity in women with dense
breast tissue, motivating the use of complementary imaging modalities.
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Ultrasound

Ultrasound imaging utilizes high-frequency sound waves to produce real-time images of internal breast
structures. As a non-ionizing and radiation-free technique, ultrasound is considered safe for repeated use
and is particularly suitable for younger patients and pregnant women. Clinically, ultrasound is frequently
used as an adjunct to mammography, especially for evaluating dense breast tissue and distinguishing
between solid and cystic lesions. Doppler ultrasound further enhances diagnostic capability by visualizing
blood flow, providing functional information in addition to structural details. Its portability, affordability,
and non-invasive nature make ultrasound a valuable tool for breast cancer screening and diagnosis.

Pathology Images

Pathology imaging plays a definitive role in breast cancer diagnosis through microscopic examination of
tissue samples obtained via biopsy or surgical excision. Advances in Whole Slide Imaging (WSI) have
enabled the digitization of histopathological slides into high-resolution images, facilitating detailed
analysis, remote consultation, and computational processing. These digital pathology images allow for the
assessment of tissue architecture, cellular morphology, tumor grade, and metastatic potential. Although
imaging modalities such as mammography and ultrasound can suggest malignancy, biopsy-based
pathological analysis remains the gold standard for confirming breast cancer and guiding clinical decision-
making.

Materials & Methods

This study adopts a multimodal framework for breast cancer diagnosis by integrating radiological and
pathological imaging modalities. The proposed workflow systematically combines mammography,
ultrasound, and histopathology data to enable comprehensive analysis across multiple diagnostic stages.
Publicly available, clinically validated datasets were utilized to ensure reproducibility and broad
applicability. Table 2-4 contains the dataset descriptions which are publicly available.

Table 2. Hematoxylin and Eosin (H&E) Biopsy Histopathology Images

Dataset Name Description Classes / Image Count | Image Format | Source / Link
Labels / Size
BreakHis Contains Benign, 7,909 images RGB, 700x460 | [13]
microscopic Malignant from 82 | px (varies)
biopsy images of patients
benign and

malignant breast
tumors captured
at different
magnification

factors (40x,
100x, 200x,

400x)
BreAst Cancer | From the ICIAR | Normal, 400 images 2048x1536 px, | [14]
Histology 2018 Grand | Benign, In situ | (100 per class) | RGB
(BACH) Challenge; carcinoma,

includes
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Challenge microscopy Invasive
Dataset patches labeled | carcinoma
into four classes.
Table 3 Ultrasound Images
Dataset Name Description Classes / Image Count Image Format | Source / Link
Labels / Size

Breast Contains Normal, 780 images PNG, 500x500 | [15]

Ultrasound ultrasound Benign, (133 normal, | px

Images images of | Malignant 437  benign,

Dataset (BUSI) | breast tissue 210 malignant)

annotated by
radiologists
with
corresponding
masks for
lesions.

Dataset of | Real clinical | Benign, 562 cases DICOM format | [16]

Breast ultrasound Malignant (images +

Ultrasound images  with | (with metadata

Lesions metadata and | pathology

(TCIA) lesion confirmation)

annotations
from The
Cancer
Imaging
Archive.
Table 4. Mammogram X-Ray Images
Dataset Name Description Classes / Image Count | Image Format | Source/ Link
Labels / Size

CBIS-DDSM Curated Benign, 3,100 cases DICOM, varied | [17]
subset of the | Malignant resolution
DDSM (Calcification, (3000x2000
database with | Mass) px)
verified
pathology
labels and ROI
annotations.

INbreast High-quality Benign, 410 images | DICOM, [18]
full-field Malignant, from 115 | 3328x4084 px
digital Background patients
mammograms
with detailed
annotations
(masses,
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calcifications,
etc.).

MIAS Classic Normal, 322 images PGM, [19]
(Mammographic | benchmark Benign, 1024x1024 px
Image Analysis | dataset for | Malignant
Society) mammogram
analysis
containing
labeled
regions of
interest.

Collectively, these datasets facilitate a unified multimodal learning environment, enabling cross-modality
feature representation and comparative evaluation within the proposed Al-assisted diagnostic
framework.

Related work

Recent advances in artificial intelligence (Al) and machine learning (ML) have significantly transformed
breast cancer diagnosis by enabling automated analysis of medical imaging modalities. Tables 2, 3, and 4
collectively summarize state-of-the-art approaches across mammography, ultrasound, and
histopathology imaging, highlighting methodological trends, performance improvements, and persistent
limitations.

Mammography-based studies, as outlined in Table 5, primarily focus on convolutional neural networks
(CNNs) and transfer learning models to address challenges related to low contrast, dense breast tissue,
and subtle lesion boundaries. Earlier works employed handcrafted feature extraction combined with
classical classifiers such as support vector machines (SVMs) and k-nearest neighbors (k-NN). However,
these approaches demonstrated limited generalization due to dependency on expert-designed features.
Recent studies increasingly adopt deep CNN architectures including VGGNet, ResNet, DenseNet, and
EfficientNet, achieving notable improvements in classification accuracy and area under the curve (AUC).
Several studies reported accuracies exceeding 90% when trained on large-scale datasets such as CBIS-
DDSM and INbreast. Despite these gains, Table 5 highlights persistent issues including class imbalance,
overfitting due to limited annotated data, and reduced sensitivity in dense breast cases, underscoring the
need for complementary imaging modalities.

Table 5. A systemic analysis based on ML and DL techniques for BC detection from Mammogram images

Study Method Task Type of Challenges and Performance
Performance modality Limitations Model
Jabeen et al., 2023 | EfficientNet- Haze-reduced CBIS-DDSM Manual Accuracy 95.4% and
[1] BO, medium | local-global and hyperparameter | 99.7%
Gaussian SVM, | (HRLG); INbreast tuning is a time-
ensemble Equilibrium- consuming and
subspace KNN, | Jaya controlled infective method
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quadratic Regula Falsi
SVM, fine KNN | (EJCRF)

JiménezGaona et | ResNetl8, Focus on cover | CBIS-DDSM Imbalance Accuracy (benign) =
al., 2024 [2] Wasserstein the imbalance | Mini-MIAS dataset 80.9%

GAN with | medical images Accuracy

Gradient (malignant)=76.9%

Penalty, Cycle
GAN, Spectral
Normalization

GAN
Melekoodappattu | Ensemble CNN | Focus on cover | MIAS  and | This work did not | Accuracy 98.00%;
et al., 2024 [3] the imbalance | DDSM consider images, | Specificity 97.80%
medical images and image
enhancement
methods  were
not discussed.
Chugh et al., 2024 | DCNN, RF and | Mobile Net, | CBIS-DDSM The Accuracy 100%
[4] XGB VGG16, effectiveness of
VGG19, deep learning
ResNet50, Res models often
Net 152, and, hinges on the
DenseNet 169 availability of
for feature large datasets for
extraction; training.
Random Forest
(RF) and XG
Boost (XGB)
Classifier

Ultrasound-based research, summarized in Table 6, addresses many of the limitations inherent in
mammography by providing real-time imaging and better visualization in dense breast tissue. However,
ultrasound images are often affected by speckle noise, operator dependency, and low signal-to-noise
ratios. Early ML-based ultrasound studies relied on texture descriptors and statistical features, but these
approaches struggled with robustness. Recent literature demonstrates a clear shift toward deep learning
frameworks, particularly CNNs and hybrid models combining CNNs with attention mechanisms or
radiomic features. Several studies incorporated data augmentation techniques and generative adversarial
networks (GANs) to mitigate data scarcity and improve generalization. As reflected in Table 6, deep
learning-based ultrasound classifiers frequently achieved diagnostic accuracies in the range of 88—95%.
Nonetheless, limitations such as poor cross-dataset generalization and lack of standardized evaluation
protocols remain prominent.

Table 6. A systemic analysis based on ML and DL techniques for BC detection from Ultrasound images

Study Method Task Performance Type of Challenges and Performance
modality Limitations Model
Ayana et al., | EfficientNet B2, | Multistage Ultrasound No specific | Avg. test
2022 [5] InceptionV3, transfer  learning justification was | accuracy
ResNet50 (MSTL) algorithm provided for using | 98.00%
5-foldcross-
validation.
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Chenetal., 2023 | GooglLeNet Based on the TV | Ultrasound Optimization or | Accuracy
[6] model and the hyperparameter 96.37%
GoogleNet model tuning methods
were not discussed
in the work
Alruily et al., | GAN, U-Net 3+ e Modified GAN | Ultrasound e Limited image | Accuracy
2023, [7] with identity dataset 95.67%
e Identity block with ¢ High training time
GAN complexity
e Modified loss
function

¢ Hybrid of the GAN
with identity blocks
and the U-Net3+

Extraction features

Wu et al.,2024, | ML (supervised, Ultrasound, e Utilizing single- | AUC (RF) 0.9,

[8] unsupervised), of Radiomics and DL | mass center data Accuracy
Radiomics features mastitis eUsing several | (RF) 88%
features, (MM) ultrasonic
DL(ResNet50) diagnostic devices

that compromised
the reliability of the
findings

Histopathology-based approaches, detailed in Table 7, focus on microscopic tissue analysis and provide
definitive diagnostic confirmation. These studies predominantly utilize high-resolution whole-slide images
or patch-based analysis from datasets such as BreakHis and BACH. Earlier methods employed handcrafted
color, texture, and morphological features, whereas contemporary research overwhelmingly favors deep
CNNs, including Inception, DenseNet, and hybrid CNN—-LSTM architectures. Table 7 indicates that
histopathology-based models often achieve the highest classification accuracies, frequently surpassing
95%. However, these methods are computationally intensive, require extensive preprocessing, and are
sensitive to staining variations and magnification levels. Moreover, most studies remain limited to binary
classification and lack integration with radiological data, reducing their clinical applicability as standalone
solutions.

Table 7. A systemic analysis based on ML and DL techniques for BC detection from Pathology images

Study Method Task Performance Type of Challenges and Performance
modality Limitations Model
Yamlome et al., | CNN A high-resolution | BreakHis Risk of overfitting | Accuracy-
2023 [9] whole-image due to the data | 91.00%(imag
training and testing augmentation. The | e-level)
on performance may | Accuracy-
a modified network not be satisfactory | 95.00%
that was  pre- from a clinical | (patient
trained on the perspective. level)
Imagenet
dataset.
Srikantamurthy | Hybrid CNN | Automated BreakHis . Scarcity of | Binary ACC =
etal., 2023 [10] | withLSTM classification of medical dataset. | 99%
Use data
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histopathological augmentation  to | Multi-class
BC avoid the | ACC=92.5%
overfitting Binary AUC
¢ Slide preparation | =0.969

and staining of WSI | Multi-class

AUC =0.89
Uppada et al, | DenseNet-201 Automated BreakHis This work did not | Accuracy-
2024 [11] classification of address the dataset | 99.75%
histopathological imbalance and
BC overfitting due to
augmentation
issues
Wang et al., | DenseNet Multi-level transfer | BreakHis The model focuses | Accuracy-
2024 [12] learning is used on binary | 84.00%

classification
without grading or
subtyping of breast
cancer.

Discussions

This review highlights the growing potential of artificial intelligence—driven approaches in breast cancer
diagnosis while underscoring critical research gaps that limit clinical translation. Analysis across
mammography, ultrasound, and histopathology studies demonstrates that deep learning models,
particularly CNN-based and hybrid architectures, consistently outperform traditional machine learning
techniques in lesion detection and classification. Importantly, evidence suggests that integrating multiple
imaging modalities enhances diagnostic sensitivity and specificity by capturing complementary tumor
characteristics across radiological and microscopic scales. Despite these strengths, current research
remains constrained by the scarcity of large, balanced multimodal datasets, heterogeneous acquisition
protocols, and limited external or multicenter validation. Most existing models operate in unimodal
settings, with insufficient attention to cross-modality feature fusion, explainability, and workflow
integration. Consequently, while multimodal Al frameworks show strong promise for reducing inter-
observer variability and supporting early diagnosis, future efforts must prioritize standardized data
curation, explainable Al, and rigorous clinical validation to ensure robustness, trust, and real-world
applicability. A critical observation emerging from Tables 2—4 is that the majority of existing studies adopt
unimodal diagnostic strategies, focusing on a single imaging modality in isolation. While modality-specific
models demonstrate strong performance, they fail to exploit the complementary diagnostic information
available across radiology and pathology. Mammography provides structural insights, ultrasound
enhances lesion characterization, and histopathology reveals cellular-level abnormalities. The absence of
integrated multimodal frameworks represents a significant research gap. Furthermore, the reviewed
literature highlights limited emphasis on explainability, clinical validation, and real-world deployment.
Few studies evaluate model robustness across institutions or imaging devices, and most rely on
retrospective datasets. These limitations restrict the translation of high-performing Al models into routine
clinical practice. Tables 2, 3, and 4 collectively demonstrate that deep learning has substantially advanced
breast cancer detection across individual imaging modalities. However, the lack of standardized
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multimodal integration, explainable decision-making, and large-scale clinical validation underscores the
necessity for unified Al-assisted diagnostic frameworks. Addressing these gaps is essential for developing
reliable, clinically deployable breast cancer diagnostic systems.

Conclusion

This review addresses a critical challenge in breast cancer diagnosis arising from the fragmented use of
isolated imaging modalities such as mammography, ultrasound, and histopathology. While each modality
provides valuable diagnostic information, their independent application limits comprehensive tumor
characterization and contributes to diagnostic variability. The motivation of this work is to highlight the
necessity for integrated, automated, and standardized diagnostic frameworks that can bridge radiological
and microscopic perspectives, reduce inter-observer variability, and support early and accurate clinical
decision-making, particularly in resource-constrained healthcare settings. A systematic and comparative
review of recent machine learning and deep learning—based studies was conducted across major breast
cancer imaging modalities. Publicly available benchmark datasets were analyzed, and state-of-the-art
models, including CNNs, hybrid architectures, and transfer learning approaches, were examined. The
review synthesized methodological trends, performance outcomes, and existing research gaps to evaluate
the feasibility and impact of multimodal Al-driven diagnostic systems. The analysis demonstrates that
deep learning models consistently outperform traditional machine learning methods across all modalities.
Importantly, studies integrating multimodal data show enhanced diagnostic accuracy, sensitivity, and
robustness by capturing complementary tumor characteristics at multiple scales. Multimodal Al
frameworks also exhibit potential to streamline clinical workflows and improve diagnostic consistency.
Despite promising results, limitations include data heterogeneity, scarcity of large balanced multimodal
datasets, limited explainability, and insufficient clinical validation. Future research should prioritize
standardized multimodal data curation, explainable Al integration, multicenter validation, and
development of clinically deployable end-to-end diagnostic systems.
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