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Abstract: Breast cancer remains a leading cause of mortality among women worldwide, and accurate, 

early diagnosis is critical for effective treatment planning. Traditional diagnostic workflows often rely on 

isolated imaging modalities—such as mammography, ultrasound, or histopathology—each offering 

partial insights into tumor morphology and progression. This fragmentation limits diagnostic precision and 

hampers clinical decision-making. Recent advances in artificial intelligence (AI) have demonstrated 

immense potential to unify heterogeneous imaging data, enabling multimodal learning systems that 

bridge radiological and microscopic domains. This review synthesizes current research trends in AI-driven 

integration of imaging modalities for breast cancer diagnosis, focusing on deep learning architectures, 

cross-modal feature fusion, and explainable AI frameworks. Significant findings highlight that multimodal 

AI models consistently outperform unimodal counterparts in diagnostic accuracy, lesion characterization, 

and prognostic prediction. Moreover, the inclusion of histopathological and radiological correlations 

enhances interpretability and clinical trust. The review identifies key challenges related to data 

heterogeneity, standardization, and generalizability across populations. Applications of this integrative 

approach span computer-aided diagnostics, personalized oncology, and telepathology solutions for low-

resource settings. The study concludes that AI-driven multimodal fusion represents a transformative 

pathway toward comprehensive, explainable, and population-relevant breast cancer diagnostics. 
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Introduction 

Breast cancer remains the most frequently diagnosed malignancy among women worldwide and 

constitutes a major global public health challenge. According to recent global health estimates, breast 

cancer accounts for nearly one-quarter of all female cancer cases, with incidence rates continuing to rise 

across both developed and developing nations. Projections indicate that approximately 30 million new 

cases are expected to be reported by 2030, underscoring the urgency for effective diagnostic and 

screening strategies. Early-stage detection significantly improves patient outcomes, with survival rates 

exceeding 90% when malignancies are identified at initial stages; however, these rates decline sharply 

when diagnosis is delayed. Consequently, accurate, timely, and reliable diagnostic pathways are critical 

for reducing mortality and improving quality of life among affected patients. 

Conventional breast cancer diagnosis follows a multistep clinical workflow involving radiological 

imaging, tissue sampling, and pathological examination. Mammography remains the primary screening 

modality due to its widespread availability and proven efficacy in reducing mortality through early lesion 
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detection. Ultrasound is frequently used as a complementary modality, particularly for women with dense 

breast tissue where mammography sensitivity is reduced. In suspected cases, tissue-based examinations 

such as fine needle aspiration cytology (FNAC), core needle biopsy, and subsequent histopathological 

analysis using hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) provide definitive 

diagnostic confirmation. Each of these modalities offers distinct yet complementary information 

regarding tumor morphology, tissue architecture, and molecular characteristics. 

Despite their clinical utility, individual diagnostic modalities suffer from inherent limitations. 

Mammography, while cost-effective and widely accessible, often yields false positives and reduced 

sensitivity in dense breast tissue and exposes patients to low-level ionizing radiation. Ultrasound is non-

invasive and radiation-free but is highly operator-dependent and susceptible to variability in image 

quality. Histopathology offers high-resolution visualization of tissue structures and remains the diagnostic 

gold standard; however, it requires expensive equipment, expert interpretation, and substantial 

computational and storage resources for whole-slide images. These limitations are further compounded 

when modalities are used in isolation, leading to fragmented diagnostic insights and potential diagnostic 

inconsistencies. 

A significant drawback of the conventional diagnostic pathway is its heavy reliance on manual 

interpretation. Radiological and pathological assessments are time-consuming and prone to inter- and 

intra-observer variability, which can affect diagnostic consistency and reproducibility. Increasing patient 

volumes and the growing complexity of imaging data place additional strain on healthcare systems, 

particularly in low-resource settings where access to expert radiologists and pathologists is limited. As a 

result, delays in diagnosis and treatment initiation remain common, adversely affecting patient outcomes. 

These challenges highlight the need for automated, standardized, and scalable diagnostic solutions 

capable of integrating heterogeneous data sources into a unified clinical framework. 

In recent years, advances in artificial intelligence (AI) and deep learning (DL) have demonstrated 

substantial promise in transforming medical image analysis and cancer diagnostics. Convolutional neural 

networks (CNNs), transfer learning models, and hybrid deep learning architectures have achieved 

remarkable performance in breast cancer detection across individual imaging modalities, often surpassing 

traditional machine learning approaches. AI-driven systems offer the ability to learn hierarchical and 

discriminative features directly from raw imaging data, reducing reliance on handcrafted features and 

improving diagnostic accuracy. Furthermore, these models provide opportunities for automation, 

consistency, and rapid analysis, addressing several limitations of manual workflows. 

However, the majority of existing AI-based diagnostic systems remain unimodal, focusing on a single 

imaging modality such as mammography, ultrasound, or histopathology. While these approaches have 

yielded encouraging results, they fail to capture the full spectrum of tumor heterogeneity observable 

across different diagnostic stages. Breast cancer is a complex disease characterized by multiscale and 

multimodal manifestations—from macroscopic radiological patterns to microscopic cellular structures—

necessitating a more holistic diagnostic approach. Limited efforts have been made to effectively fuse 

features across modalities, and standardized multimodal frameworks remain largely absent from the 

literature. 

The lack of integrated multimodal diagnostic systems presents a critical research gap. Current studies 

often employ non-standardized datasets, heterogeneous preprocessing pipelines, and modality-specific 

architectures, hindering generalizability and clinical translation. Moreover, challenges such as data 
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imbalance, domain shift across populations, and limited clinical validation persist. Explainability and 

interpretability—key requirements for clinical trust and adoption—are frequently overlooked in existing 

models. These limitations emphasize the need for robust multimodal AI frameworks that not only achieve 

high diagnostic performance but also align with real-world clinical workflows. 

In this context, the central objective of this research is to develop a multimodal AI-assisted architecture 

for breast cancer diagnosis that integrates multiple imaging modalities, including mammography, 

ultrasound, and histopathology. By bridging radiology and microscopy through advanced AI-driven feature 

extraction and fusion techniques, the proposed framework aims to deliver a comprehensive, automated, 

and standardized diagnostic solution. Such an approach seeks to minimize manual variability, reduce 

diagnostic delays, and enhance accuracy across diverse clinical settings. 

This study addresses several critical challenges in contemporary breast cancer care, including 

variability in expert interpretation, limited healthcare resources, and the growing demand for early and 

reliable diagnosis. By leveraging multimodal data and state-of-the-art AI methodologies, the proposed 

system aspires to streamline the diagnostic pathway and support clinical decision-making. Ultimately, the 

integration of multimodal imaging within a unified AI framework has the potential to advance precision 

oncology, improve patient outcomes, and facilitate scalable breast cancer screening and diagnosis in both 

high- and low-resource environments.  

 

BC Screening Techniques 

A range of medical imaging modalities is employed in the screening, diagnosis, monitoring, and treatment 

planning of breast cancer (BC) to detect abnormalities and characterize tumor properties. Breast cancer 

screening integrates multiple imaging techniques to identify pathological changes in breast tissue at an 

early stage, thereby improving prognosis and reducing disease-related mortality. With the growing 

adoption of machine learning (ML) and deep learning (DL) approaches in medical imaging, these 

modalities have become central to the development of automated and computer-aided diagnostic 

systems. This section reviews the primary imaging modalities used in BC screening and diagnosis, 

highlighting their clinical relevance and applicability in AI-driven frameworks.  

 

Mammography 

Mammography is one of the most widely utilized imaging modalities for breast cancer detection, 

employing low-dose X-rays to generate detailed images of breast tissue. It plays a crucial role in early 

screening, enabling the identification of subtle abnormalities that may not be clinically palpable. Large-

scale screening programs have demonstrated that routine mammography significantly reduces breast 

cancer mortality by facilitating early diagnosis. Mammography serves both screening and diagnostic 

purposes. Screening mammograms are used for asymptomatic individuals to detect early signs of 

malignancy, whereas diagnostic mammograms provide a more detailed evaluation of suspicious findings 

such as palpable lumps, breast pain, or abnormal nipple discharge, often following an abnormal screening 

result. Despite its effectiveness, mammography may exhibit reduced sensitivity in women with dense 

breast tissue, motivating the use of complementary imaging modalities. 
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Ultrasound 

Ultrasound imaging utilizes high-frequency sound waves to produce real-time images of internal breast 

structures. As a non-ionizing and radiation-free technique, ultrasound is considered safe for repeated use 

and is particularly suitable for younger patients and pregnant women. Clinically, ultrasound is frequently 

used as an adjunct to mammography, especially for evaluating dense breast tissue and distinguishing 

between solid and cystic lesions. Doppler ultrasound further enhances diagnostic capability by visualizing 

blood flow, providing functional information in addition to structural details. Its portability, affordability, 

and non-invasive nature make ultrasound a valuable tool for breast cancer screening and diagnosis. 

 

Pathology Images 

Pathology imaging plays a definitive role in breast cancer diagnosis through microscopic examination of 

tissue samples obtained via biopsy or surgical excision. Advances in Whole Slide Imaging (WSI) have 

enabled the digitization of histopathological slides into high-resolution images, facilitating detailed 

analysis, remote consultation, and computational processing. These digital pathology images allow for the 

assessment of tissue architecture, cellular morphology, tumor grade, and metastatic potential. Although 

imaging modalities such as mammography and ultrasound can suggest malignancy, biopsy-based 

pathological analysis remains the gold standard for confirming breast cancer and guiding clinical decision-

making. 

 

Materials & Methods 

This study adopts a multimodal framework for breast cancer diagnosis by integrating radiological and 

pathological imaging modalities. The proposed workflow systematically combines mammography, 

ultrasound, and histopathology data to enable comprehensive analysis across multiple diagnostic stages. 

Publicly available, clinically validated datasets were utilized to ensure reproducibility and broad 

applicability. Table 2-4 contains the dataset descriptions which are publicly available. 

 

Table 2. Hematoxylin and Eosin (H&E) Biopsy Histopathology Images 

Dataset Name Description Classes / 
Labels 

Image Count Image Format 
/ Size 

Source / Link 

BreakHis Contains 
microscopic 
biopsy images of 
benign and 
malignant breast 
tumors captured 
at different 
magnification 
factors (40×, 
100×, 200×, 
400×) 

Benign, 
Malignant 

7,909 images  
from 82 
patients 

RGB, 700×460 
px (varies) 

[13] 

BreAst Cancer 
Histology 
(BACH) 

From the ICIAR 
2018 Grand 
Challenge; 
includes 

Normal, 
Benign, In situ 
carcinoma, 

400 images  
(100 per class) 

2048×1536 px, 
RGB 

[14] 
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Challenge 
Dataset 

microscopy 
patches labeled 
into four classes. 

Invasive 
carcinoma 

 

Table 3 Ultrasound Images 

Dataset Name Description Classes / 
Labels 

Image Count Image Format 
/ Size 

Source / Link 

Breast 
Ultrasound 
Images 
Dataset (BUSI) 

Contains 
ultrasound 
images of 
breast tissue 
annotated by 
radiologists 
with 
corresponding 
masks for 
lesions. 

Normal, 
Benign, 
Malignant 

780 images  
(133 normal, 
437 benign, 
210 malignant) 

PNG, 500×500 
px 

[15] 

Dataset of 
Breast 
Ultrasound 
Lesions  
(TCIA) 

Real clinical 
ultrasound 
images with 
metadata and 
lesion 
annotations 
from The 
Cancer 
Imaging 
Archive. 

Benign, 
Malignant 
(with 
pathology 
confirmation) 

562 cases  
(images + 
metadata 

DICOM format [16] 

 

Table 4. Mammogram X-Ray Images 

Dataset Name Description Classes / 
Labels 

Image Count Image Format 
/ Size 

Source / Link 

CBIS-DDSM Curated 
subset of the 
DDSM 
database with 
verified 
pathology 
labels and ROI 
annotations. 

Benign, 
Malignant 
(Calcification, 
Mass) 

3,100 cases DICOM, varied 
resolution 
(3000×2000 
px) 

[17] 

INbreast High-quality 
full-field 
digital 
mammograms 
with detailed 
annotations 
(masses, 

Benign, 
Malignant, 
Background 

410 images 
from 115 
patients 

DICOM,  
3328×4084 px 

[18] 
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calcifications, 
etc.). 

MIAS 
(Mammographic 
Image Analysis 
Society) 

Classic 
benchmark 
dataset for 
mammogram 
analysis 
containing 
labeled 
regions of 
interest. 

Normal, 
Benign, 
Malignant 

322 images PGM,  
1024×1024 px 

[19] 

 

Collectively, these datasets facilitate a unified multimodal learning environment, enabling cross-modality 

feature representation and comparative evaluation within the proposed AI-assisted diagnostic 

framework. 

 

Related work 

 

Recent advances in artificial intelligence (AI) and machine learning (ML) have significantly transformed 

breast cancer diagnosis by enabling automated analysis of medical imaging modalities. Tables 2, 3, and 4 

collectively summarize state-of-the-art approaches across mammography, ultrasound, and 

histopathology imaging, highlighting methodological trends, performance improvements, and persistent 

limitations. 

Mammography-based studies, as outlined in Table 5, primarily focus on convolutional neural networks 

(CNNs) and transfer learning models to address challenges related to low contrast, dense breast tissue, 

and subtle lesion boundaries. Earlier works employed handcrafted feature extraction combined with 

classical classifiers such as support vector machines (SVMs) and k-nearest neighbors (k-NN). However, 

these approaches demonstrated limited generalization due to dependency on expert-designed features. 

Recent studies increasingly adopt deep CNN architectures including VGGNet, ResNet, DenseNet, and 

EfficientNet, achieving notable improvements in classification accuracy and area under the curve (AUC). 

Several studies reported accuracies exceeding 90% when trained on large-scale datasets such as CBIS-

DDSM and INbreast. Despite these gains, Table 5 highlights persistent issues including class imbalance, 

overfitting due to limited annotated data, and reduced sensitivity in dense breast cases, underscoring the 

need for complementary imaging modalities. 

 

 

Table 5. A systemic analysis based on ML and DL techniques for BC detection from Mammogram images 

Study Method Task 
Performance 

Type of 
modality 

Challenges and 
Limitations 

Performance 
Model 

Jabeen et al., 2023 
[1] 

EfficientNet-
B0, medium 
Gaussian SVM, 
ensemble 
subspace KNN, 

Haze-reduced 
local-global 
(HRLG); 
Equilibrium-
Jaya controlled 

CBIS-DDSM 
and 
INbreast 

Manual 
hyperparameter 
tuning is a time-
consuming and 
infective method 

Accuracy 95.4% and 
99.7% 
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quadratic 
SVM, fine KNN 

Regula Falsi 
(EJCRF) 

JiménezGaona et 
al., 2024 [2] 

ResNet18, 
Wasserstein 
GAN with 
Gradient 
Penalty, Cycle 
GAN, Spectral 
Normalization 
GAN 

Focus on cover 
the imbalance 
medical images 

CBIS-DDSM 
Mini-MIAS 

Imbalance 
dataset 

Accuracy (benign) = 
80.9% 
Accuracy 
(malignant)=76.9% 

Melekoodappattu 
et al., 2024 [3] 

Ensemble CNN Focus on cover 
the imbalance 
medical images 

MIAS and 
DDSM 

This work did not 
consider images, 
and image 
enhancement 
methods were 
not discussed. 

Accuracy 98.00%; 
Specificity 97.80% 

Chugh et al., 2024 
[4] 

DCNN, RF and 
XGB 

Mobile Net, 
VGG16, 
VGG19, 
ResNet50, Res 
Net 152, and, 
DenseNet 169 
for feature 
extraction; 
Random Forest 
(RF) and XG 
Boost (XGB) 
Classifier 

CBIS-DDSM The 
effectiveness of 
deep learning 
models often 
hinges on the 
availability of 
large datasets for 
training. 

Accuracy 100% 

 

Ultrasound-based research, summarized in Table 6, addresses many of the limitations inherent in 

mammography by providing real-time imaging and better visualization in dense breast tissue. However, 

ultrasound images are often affected by speckle noise, operator dependency, and low signal-to-noise 

ratios. Early ML-based ultrasound studies relied on texture descriptors and statistical features, but these 

approaches struggled with robustness. Recent literature demonstrates a clear shift toward deep learning 

frameworks, particularly CNNs and hybrid models combining CNNs with attention mechanisms or 

radiomic features. Several studies incorporated data augmentation techniques and generative adversarial 

networks (GANs) to mitigate data scarcity and improve generalization. As reflected in Table 6, deep 

learning-based ultrasound classifiers frequently achieved diagnostic accuracies in the range of 88–95%. 

Nonetheless, limitations such as poor cross-dataset generalization and lack of standardized evaluation 

protocols remain prominent. 

 

Table 6. A systemic analysis based on ML and DL techniques for BC detection from Ultrasound images 

Study Method Task Performance Type of 
modality 

Challenges and 
Limitations 

Performance 
Model 

Ayana et al., 
2022 [5] 

EfficientNet B2, 
InceptionV3, 
ResNet50 

Multistage 
transfer learning 
(MSTL) algorithm 

Ultrasound No specific 
justification was 
provided for using 
5-foldcross-
validation. 

Avg. test 
accuracy 
98.00% 
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Chen et al., 2023 
[6] 

GoogLeNet Based on the TV 
model and the 
GoogLeNet model 

Ultrasound Optimization or 
hyperparameter 
tuning methods 
were not discussed 
in the work 

Accuracy 
96.37% 

Alruily et al., 
2023, [7] 

GAN, U-Net 3+ • Modified GAN 
with identity 
• Identity block with 
GAN 
• Modified loss 
function 
• Hybrid of the GAN 
with identity blocks 
and the U-Net3+ 

Ultrasound • Limited image 
dataset 
• High training time 
complexity 

Accuracy 
95.67% 

Wu et al.,2024, 
[8] 

ML (supervised, 
unsupervised), 
Radiomics 
features, 
DL(ResNet50) 

Extraction features 
of Radiomics and DL 
features 

Ultrasound, 
mass 
mastitis 
(MM) 
 

• Utilizing single-
center data 
•Using several 
ultrasonic 
diagnostic devices 
that compromised 
the reliability of the 
findings 

AUC (RF) 0.9,  
Accuracy 
(RF) 88% 

 

Histopathology-based approaches, detailed in Table 7, focus on microscopic tissue analysis and provide 

definitive diagnostic confirmation. These studies predominantly utilize high-resolution whole-slide images 

or patch-based analysis from datasets such as BreakHis and BACH. Earlier methods employed handcrafted 

color, texture, and morphological features, whereas contemporary research overwhelmingly favors deep 

CNNs, including Inception, DenseNet, and hybrid CNN–LSTM architectures. Table 7 indicates that 

histopathology-based models often achieve the highest classification accuracies, frequently surpassing 

95%. However, these methods are computationally intensive, require extensive preprocessing, and are 

sensitive to staining variations and magnification levels. Moreover, most studies remain limited to binary 

classification and lack integration with radiological data, reducing their clinical applicability as standalone 

solutions. 

 

Table 7. A systemic analysis based on ML and DL techniques for BC detection from Pathology images 

Study Method Task Performance Type of 
modality 

Challenges and 
Limitations 

Performance 
Model 

Yamlome et al., 
2023 [9] 

CNN A high-resolution 
whole-image 
training and testing 
on 
a modified network 
that was pre-
trained on the 
Imagenet 
dataset. 

BreakHis Risk of overfitting 
due to the data 
augmentation. The 
performance may 
not be satisfactory 
from a clinical 
perspective. 

Accuracy-
91.00%(imag
e-level) 
Accuracy-
95.00% 
(patient 
level) 

Srikantamurthy 
et al., 2023 [10] 

Hybrid CNN 
withLSTM 

Automated 
classification of 

BreakHis • Scarcity of 
medical dataset. 
Use data 

Binary ACC = 
99% 
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histopathological 
BC 

augmentation to 
avoid the 
overfitting 
• Slide preparation 
and staining of WSI 

Multi-class 
ACC =92.5% 
Binary AUC 
=0.969 
Multi-class 
AUC =0.89 

Uppada et al., 
2024 [11] 

DenseNet-201 Automated 
classification of 
histopathological 
BC 

BreakHis This work did not 
address the dataset 
imbalance and 
overfitting due to 
augmentation 
issues 

Accuracy-
99.75% 

Wang et al., 
2024 [12] 

DenseNet Multi-level transfer 
learning is used 

BreakHis The model focuses 
on binary 
classification 
without grading or 
subtyping of breast 
cancer. 

Accuracy-
84.00% 

 

 

Discussions 

This review highlights the growing potential of artificial intelligence–driven approaches in breast cancer 

diagnosis while underscoring critical research gaps that limit clinical translation. Analysis across 

mammography, ultrasound, and histopathology studies demonstrates that deep learning models, 

particularly CNN-based and hybrid architectures, consistently outperform traditional machine learning 

techniques in lesion detection and classification. Importantly, evidence suggests that integrating multiple 

imaging modalities enhances diagnostic sensitivity and specificity by capturing complementary tumor 

characteristics across radiological and microscopic scales. Despite these strengths, current research 

remains constrained by the scarcity of large, balanced multimodal datasets, heterogeneous acquisition 

protocols, and limited external or multicenter validation. Most existing models operate in unimodal 

settings, with insufficient attention to cross-modality feature fusion, explainability, and workflow 

integration. Consequently, while multimodal AI frameworks show strong promise for reducing inter-

observer variability and supporting early diagnosis, future efforts must prioritize standardized data 

curation, explainable AI, and rigorous clinical validation to ensure robustness, trust, and real-world 

applicability. A critical observation emerging from Tables 2–4 is that the majority of existing studies adopt 

unimodal diagnostic strategies, focusing on a single imaging modality in isolation. While modality-specific 

models demonstrate strong performance, they fail to exploit the complementary diagnostic information 

available across radiology and pathology. Mammography provides structural insights, ultrasound 

enhances lesion characterization, and histopathology reveals cellular-level abnormalities. The absence of 

integrated multimodal frameworks represents a significant research gap. Furthermore, the reviewed 

literature highlights limited emphasis on explainability, clinical validation, and real-world deployment. 

Few studies evaluate model robustness across institutions or imaging devices, and most rely on 

retrospective datasets. These limitations restrict the translation of high-performing AI models into routine 

clinical practice. Tables 2, 3, and 4 collectively demonstrate that deep learning has substantially advanced 

breast cancer detection across individual imaging modalities. However, the lack of standardized 
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multimodal integration, explainable decision-making, and large-scale clinical validation underscores the 

necessity for unified AI-assisted diagnostic frameworks. Addressing these gaps is essential for developing 

reliable, clinically deployable breast cancer diagnostic systems. 

 

Conclusion 

 

This review addresses a critical challenge in breast cancer diagnosis arising from the fragmented use of 

isolated imaging modalities such as mammography, ultrasound, and histopathology. While each modality 

provides valuable diagnostic information, their independent application limits comprehensive tumor 

characterization and contributes to diagnostic variability. The motivation of this work is to highlight the 

necessity for integrated, automated, and standardized diagnostic frameworks that can bridge radiological 

and microscopic perspectives, reduce inter-observer variability, and support early and accurate clinical 

decision-making, particularly in resource-constrained healthcare settings. A systematic and comparative 

review of recent machine learning and deep learning–based studies was conducted across major breast 

cancer imaging modalities. Publicly available benchmark datasets were analyzed, and state-of-the-art 

models, including CNNs, hybrid architectures, and transfer learning approaches, were examined. The 

review synthesized methodological trends, performance outcomes, and existing research gaps to evaluate 

the feasibility and impact of multimodal AI-driven diagnostic systems. The analysis demonstrates that 

deep learning models consistently outperform traditional machine learning methods across all modalities. 

Importantly, studies integrating multimodal data show enhanced diagnostic accuracy, sensitivity, and 

robustness by capturing complementary tumor characteristics at multiple scales. Multimodal AI 

frameworks also exhibit potential to streamline clinical workflows and improve diagnostic consistency.  

Despite promising results, limitations include data heterogeneity, scarcity of large balanced multimodal 

datasets, limited explainability, and insufficient clinical validation. Future research should prioritize 

standardized multimodal data curation, explainable AI integration, multicenter validation, and 

development of clinically deployable end-to-end diagnostic systems.  
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