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Abstract: ARDS is a severe pulmonary condition that requires timely and accurate diagnosis in 

order to reduce mortality. In this work, several deep learning architectures, including ResNet-

101, ResNet-152, EfficientNet-B6, and EfficientNet-B7, were empirically compared for the 

detection of ARDS, together with a novel meta-learning–based fusion framework. The proposed 

stacking-based meta learner integrates the complementary predictions from individual models 

to enhance diagnostic performance. Experiments conducted on a multi-class CT image dataset 

show that the proposed model yields an accuracy of 96%, recall of 96%, and F1-score of 92% 

significantly higher than standalone architectures. Comprehensive evaluation using accuracy, 

sensitivity, specificity, AUC, and confusion matrix analysis confirms the robustness, stability, and 

superior generalization capability of the proposed approach. The results have underlined the 

effectiveness of meta-learning–driven model fusion in the development of a reliable ARDS 

detector, capable of clinical decision support. 
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Introduction: Acute Respiratory Distress Syndrome (ARDS) is a severe life-threatening condition 

characterized by rapid onset of widespread inflammation in the lungs impeding oxygenation. In 

normal conditions, alveoli are air-filled sacs that provide the surface area for efficient gas 

exchange between inspired O2 and the flowing blood. As schematized, normal alveoli are open 

and 'dry' with O2 diffusing across the alveolar-capillary membrane with ease to meet the 

metabolic requirements of the body. 

In ARDS, inflammatory injury to the alveolar–capillary barrier promotes fluid accumulation within 

the alveoli. Fluid accumulation decreases the surface area available for gas exchange and thickens 

the diffusion barrier, thus allowing only very limited transfer of oxygen into the blood. The image 

illustrates this pathologic transition, in which alveoli are partially or fully flooded, leading to an 

underavailability of oxygen despite sufficient ventilation. 

An important aftermath, or consequence, of gas exchange abnormalities in ARDS is a severe 

degree of hypoxemia, which can very rapidly lead to failure of the respiratory system if it is not 
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treated on time. ARDS patients may use either supplemental oxygen therapy or ventilator 

support for their oxygenation needs. A thorough understanding of the normal vs. ARDS-altered 

alveoli is a fundamental part of creating strategies for their effective management. 

 

Related work: Recent works have tried to apply ML and AI techniques for ARDS detection, 

prediction, and prognosis. These contributions have been very diverse, ranging from purely 

narrative reviews summarizing available methodologies to purely data-driven predictive models 

focused on detection, progression, complications, and mortality. Together, they reflect an 

increasing role of ML in critical care decision-making but also point out how diverse this still is, 

motivating more robust and unified modeling approaches. 

Table 1: Recent work done prediction and prognosis for ARDS detection,  

Reference Objective Methodology Advantages Limitations 

[13] Rubulotta 
et al. (2024) 

Review ML tools 
for ARDS 
detection and 
prediction in ICU 
settings 

Narrative review of 
ML/AI approaches 
using clinical, 
laboratory, and 
imaging data 

Comprehensive 
overview of risks, 
benefits, and bedside 
applicability; highlights 
clinical relevance 

Review-based; no 
experimental 
validation or 
comparative 
benchmarking 

[14] Villar et al. 
(2023) 

Predict ICU 
mortality in ARDS 
patients 

Logistic regression, 
Random Forest, 
XGBoost on 
multicenter ICU 
clinical data; 
external validation 

Strong statistical rigor; 
external validation; 
high AUC (up to 0.91) 

Focused on mortality 
prediction, not ARDS 
detection; relies 
mainly on clinical 
variables 

[15] Pai et al. 
(2022) 

Detect ARDS using 
combined clinical 
data and chest X-
rays 

CNN with transfer 
learning + ML 
models (XGB, RF, 
LR); ensemble 
weighting; Grad-
CAM, SHAP 

Multimodal fusion; high 
AUC (0.925); 
explainable AI 
integration 

Requires both 
imaging and clinical 
data; increased 
system complexity 

[16] Chiumello 
et al. (2024) 

Review AI 
applications in 
lung imaging for 
ARDS 

Narrative review of 
AI with CT and 
ultrasound imaging 

Highlights imaging-
driven AI potential and 
clinical workflow 
benefits 

Conceptual review; 
lacks quantitative 
evaluation 

[17] Lazzarini 
et al. (2022) 

Predict 
progression to 
ARDS in COVID-19 
patients 

Gradient Boosting 
Decision Tree on 
large-scale claims 
data 

Large real-world 
dataset; early risk 
stratification; 
comparable to 
clinicians 

Moderate 
performance (AUC ≈ 
0.69); no imaging 
data 

[18] Wei et al. 
(2023) 

Predict acute 
kidney injury (AKI) 
in ARDS patients 

Multiple ML models 
on MIMIC-III/IV; 
XGBoost with SHAP 
and HPO 

Strong interpretability; 
external validation; 
compact model 

Focused on AKI 
complication, not 
direct ARDS diagnosis 
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[19] Mu et al. 
(2025) 

Predict mortality 
in sepsis-
associated ARDS 

Boruta feature 
selection + ML 
models (RF, 
XGBoost, SVM, etc.) 
on MIMIC-III 

Robust feature 
selection; good AUC 
(0.80); clinical 
relevance 

Retrospective design; 
no imaging features 

[20] Ding et al. 
(2024) 

Early prediction of 
ARDS mortality 

Random Forest on 
dynamic clinical data 
(baseline vs day-3) 

Demonstrates 
importance of temporal 
clinical features; 
improved AUC (0.84) 

Limited to mortality 
prediction; single trial 
dataset 

 

Methodology: The Lung Cancer Image Dataset (2024) offers a rich and detailed resource 

designed to facilitate research in medical image analysis, particularly focused on the early 

detection and classification of lung cancer. This curated dataset consists of high-resolution CT 

scan images that capture the intricate morphological variations present in different lung cancer 

subtypes. It serves as a valuable foundation for researchers, clinicians, and deep learning 

practitioners seeking to develop, train, and validate advanced diagnostic models. 

 

Dataset Description 

 

The dataset is systematically divided into three subsets to ensure comprehensive analysis and 

model evaluation: 

 

Training Set (613 images): A robust and diverse set of images, carefully labeled across four 

diagnostic categories, enabling effective feature learning and model generalization. 

 

Testing Set (315 images): A distinct set of images used to assess the performance and predictive 

capability of trained models on unseen data. 

 

Validation Set (72 images): A specialized subset utilized for fine-tuning model parameters and 

preventing overfitting, ensuring optimal generalizability. 

 

CT Scan Imaging Features 

 

Each CT scan image provides high-resolution visualization of lung structures, capturing the subtle 

differences in texture, density, and shape that characterize malignant and normal tissues. These 

detailed representations allow for precise feature extraction, supporting both traditional image 

analysis and deep learning-based diagnostic methods. 

 

Classes and Annotations 
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The dataset encompasses four distinct and clinically significant classes: 

 

Adenocarcinoma – representing glandular tumor formations typically found in the outer regions 

of the lungs. 

 

Large Cell Carcinoma – characterized by large, abnormal cells, often associated with aggressive 

tumor behavior. 

 

Normal – depicting healthy lung tissues, serving as a control class for baseline comparison. 

 

Squamous Cell Carcinoma – involving the epithelial cells lining the airways, often identified 

through keratinization patterns in CT scans. 

 
Figure 2: Overview of the Dataset 

 

In the proposed framework, an end-to-end deep learning-based ensemble method is used for 

classifying coronavirus, normal, and pneumonia classes from chest radiograph images 

automatically. In this proposed work, the process of classifying chest radiograph images begins 

with prepossessing those collected images in order to enhance their quality and conducting 

exploratory data analysis of those prepossessed chest radiograph images. In the next phase, the 
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preprocessed chest radiograph images are simultaneously fed to robust backbone networks, 

such as ResNet-101, ResNet-152, EfficientNet-B6, and EfficientNet-B7, to extract distinct and 

representative deep feature maps. The outputs of the respective networks are combined by the 

meta-learner, which effectively learns different network capabilities to improve the ensemble 

model's predictive performance. Finally, the ensemble model provides the last class prediction 

for coronavirus, normal, and pneumonia, and the proposed framework evaluates the ensemble 

model using rigorous training, test, and validation processes, while the accuracy of the ensemble 

model is analyzed in terms of different accuracy metrics, such as accuracy, precision, recall, and 

F1-score. 

 

 

 
 

Figure 3: Proposed Model 

 

Result:  

1. Accuracy 

Proportion of correctly predicted observations (both true positives and true negatives) out of the total 

observations. 

                      (1) 
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2. Sensitivity (Recall or True Positive Rate) 

Proportion of actual positives correctly identified. 

                                               (2) 

 

3. Specificity (True Negative Rate) 

Proportion of actual negatives correctly identified. 

                                              (3) 

4. AUC (Area Under the ROC Curve) 

• Definition: Measures the ability of the model to distinguish between classes. 

• Not a simple formula like others — it is calculated from the ROC curve, which plots TPR vs. FPR 

at various thresholds. 

• Interpretation: AUC ranges from 0 to 1. 

o AUC = 1 → perfect classifier 

o AUC = 0.5 → random guessing 

 

Abbreviations: 

• TP: True Positives 

• TN: True Negatives 

• FP: False Positives 

• FN: False Negatives 

 

 

The training and validation curves help in understanding the learning ability and generalization 

ability of the proposed approach over the epochs. From the accuracy plot, it is evident that the 

proposed approach leads to a steep increase in the training accuracy over the first few epochs 

before finally converging near 99%, thereby suggesting effective learning of features and the 

ability of the proposed approach in modeling complex relationships using high-capacity models. 

The accuracy of the proposed approach in the validation set is observed to increase steadily until 

converging near the values of 85-92%, thus suggesting an effective generalization, though with a 

slight change in the accuracy, thus suggesting that there are moderate variations in the data. 

Similarly, the loss graphs clearly indicate that there is a great reduction in the training loss, nearly 

reaching the values of zero, thus suggesting an effective generalization in the proposed approach. 

Similarly, the validation loss of the proposed approach is observed to decrease initially until 

nearly hovering around a fixed range, thus suggesting that there is slight overfitting in the 

proposed approach. 
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Figure 4: RESNET 101 model accuracy and loss 

The classification report and the confusion matrix give a fair assessment of the performance of 

the model on the test dataset. The overall accuracy of 81% ensures strong multi-class 

classification performance. Classification analysis reveals that Class 2 gives the best results, with 

a perfect recall value of 1.00 and an 'F1-score' of 0.99, indicating the model’s excellence in 

effectively classifying objects under this class. Class 0 is the next best, but with an 'F1-score' of 

0.80, while Class 1 performance is moderate with relatively low recall values of 0.69, indicating 

many instances classified from Class 1 to the adjacent classes. Class 3 obtains high recall values 

of 0.86 but relatively low 'precision' of 0.66, confirming the class model’s bias towards 'false 

positives.' The confusion matrix again supports the results, with dominant diagonals indicating 

successful classification of entries under all classes, and less diagonal entries indicating the 

peculiarities of the confusions, especially Class 0 vs. Class 3, and Class 1 vs. Class 0. The 'F1-score' 

values of 0.83 for macro-average and 0.81 for the weighted average again attest the relative 

equality of performance of all classes, though unbalanced, proving the model’s effectiveness, 

practicality, and robustness. 
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Figure 5: RESNET 101 model evaluation and Confusion matrix 

The performance graphs of the ResNet-152 model reflect well-optimized convergence and 

generalization processes of the model during training. It is noted in the accuracy graphs that the 

training accuracy of the models grows very quickly in the first phases of the training process and 

converges around the value of 99%, reflecting the aptness of the models in generalization of 

discriminative deep features for classification purposes. Additionally, the validation accuracy of 

the models also improves continuously throughout the training phases and converges around 

the values of 91%-93%, showing appropriate generalization of the models in classification of 

unknown data. Furthermore, the loss graphs of the models reflect well-optimized convergence 

of the models in the training phases and appropriate generalization of the models in classification 

of unknown data without much overfitting. 

 

Figure 6: RESNET 152 model accuracy and loss 
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Figure 7 shows the performance analysis and confusion matrix output for the ResNet-152 network on the 

test data. Overall accuracy is at 72% for the ResNet-152 network, which is quite decent for four categories. 

Class-2 is the best-performing class for the ResNet-152 network in terms of perfect recall value (1.00) and 

near-perfect F1-score value (0.99), which signifies highly accurate identification. Class-1 is quite balanced 

with an F1-score value (0.76), while in Class-0, the network has high precision (0.91) values compared to 

the low recall (0.61), which signifies the possibility of the presence of misidentification of the images in 

this class as Class-3. Class-3 signifies perfect (1.00) values in terms of recall but low (0.26) values in terms 

of precision. That is, ResNet-152 network highly predicts other images as Class-3. Confusion matrix 

analysis also signifies the above findings as the diagonal elements are quite high for Classes-1 and -2. On 

the other hand, high confusions occur between the other two categories: Classes-0 and -3. Macro F1-

score (0.72) and weighted F1-score (0.75) values for the ResNet-152 network signify the network is quite 

accurate for the dominant class. 

 

 

 
 

Figure 7: RESNET 152 model evaluation and Confusion matrix 

 

In Figure 8, the training and validation accuracy and loss functions of the EfficientNet-B6 model 

are depicted. From the accuracy curve in Figure 8 it can be see that training accuracy soon 

reaches 98%, and the validation accuracy reaches 90-93% after some oscillations. From the above 

discussion, it is clear that the model has high accuracy. From the above two figures, it is concluded 

that the training and validation losses soon reach close to zero. Both figures confirm that the 

validation loss oscillates in a small range. From the above discussion, it is assured that the 

EfficientNet-B6 model has high accuracy and converges fast. 

EfficientNetB6 
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Figure 8: EfficientNetB6  model accuracy and loss 

 

Figure 9 illustrates the result of quantitative analysis and confusion matrix of the EfficientNet-B6 

model on testing data sets, showcasing its excellent and balanced-classification accuracy. The 

model's overall accuracy is found to be 80%, which ensures trustworthy multi-classification 

accuracy. This model performs outstandingly on Class-2 with perfect recall of 1.00 and F1-score 

of 0.99, validating its ability to make robust predictions on this class. Class-0 & Class-1 perform 

reliably and with perfectly balanced accuracy, with F1-scores of 0.82 & 0.81, respectively, 

validating dependable precision-recall trade-off. Class-3 reaches a remarkably high level of 

precision of 0.98 but with very low precision of 0.44, suggesting that this model accurately 

predicts most instances of this class but ends up predicting a considerable number of instances 

of other class as Class-3. The confusion matrix confirms above analysis with its dominance on 

diagonals with least confusion between Class-0 & Class-3. Moreover, well-balanced accuracy of 

this model on each class is justified by macro-averaged & weighted F1-score of 0.81 & 0.82, 

respectively. 
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Figure 9: EfficientNetB6 model evaluation and Confusion matrix 

 

Figure 10 shows the training and validation accuracy and loss of the EfficientNet-B7 model to 

analyze the convergence process and generalization ability of the model. The training accuracy 

of the model rises dramatically in the beginning and becomes stable around 99% to 100%, 

showing the model's strong ability to represent the data and extract the features accurately. The 

validation accuracy of the model also shows a rising trend but remains between 85% and 91% 

with little fluctuation, showing low variability in the model's generalization ability despite the 

increase in epochs. On the loss side, the training loss of the model shows a dramatic decrease in 

the early epochs and becomes stable around the zero line, showing that the model is converged 

without much difficulty. However, the validation loss of the model in the initial epochs shows 

dramatic reduction, and the rest of the epochs show little fluctuation around the stable line 

without much overfitting, despite the model's complex nature, showing that the model has 

strong convergence characteristics and can perform efficiently in medical image classification 

tasks as well as in the ensemble model proposed in this study. 
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Figure 10:  EfficientNetB7 model accuracy and loss 

Figure 11: Test efficiency of EfficientNetB7, showing an overall accuracy of 68% with a weighted 

F1-score of 0.72. Class-wise analysis reveals very high performance for class 2 with an F1 of 0.99, 

as all its samples are correctly predicted. Class 0 has a moderate performance with an F1 of 0.73 

but is confused with class 3. Class 1 demonstrates high precision, low recall, while class 3 has high 

recall with poor precision, indicating many false positives. The confusion matrix demonstrates 

that misclassifications occur most among classes 0, 1, and 3-reflecting class imbalance effects. 

 

 

 
 

Figure 11: EfficientNetB7 model evaluation and Confusion matrix  

In figure 12, the graphs are shown for training, as well as validation accuracy, as well as the loss in the 

proposed system for various epochs. From the accuracy curve, it is noticed that the proposed system 

converges rapidly for the first few epochs, in which the training accuracy increases closer to 100%, while 

the validation accuracy converges closer to 96-98%. From the loss graphs, it is evident that training as well 
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as validation loss for the proposed system converges gradually, where the validation loss follows the 

training loss. the binding region between these two graphs indicates less overfitting in the proposed 

system. 

 

 
 

 

Figure 12: Proposed model accuracy and loss 

 

Figure 13 below is the evaluation results of the proposed approach with the test data. The 

proposed approach is accurate in classification, yielding 96% overall accuracy. The precision, 

recall, and F1-score in class 1 are 1.00, with a perfect classification with no mistakes. The F1-score 

is 0.95, which is perfect, in class 2. The F1-score is 0.82 with a good balance in class 0, with a high 

recall measure at 0.95. The results in class 3 have a high recall measure but a low precision 

measure, which indicates that the results are full of false positives. 

 
Figure 13: Proposed Model evaluation 

The comparative analysis in Table 2 clearly verifies that the proposed approach performs much 

better than the baseline and the current state-of-the-art models for evaluating all criteria. 

Although the ResNet-101 and EfficientNet-B6 models have a competitive accuracy rate of 81% 

and 80% respectively, their precision, recall, and F1-score are still lower than the proposed 

approach. The lowest results are obtained by the EfficientNet-B7 approach with the lowest 

accuracy rate of 68% and F1-score of 67% compared to other approaches. However, the 
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proposed approach has the best accuracy rate of 96% with a significantly high recall rate of 96% 

and F1-score of 92%.  

Table 2: The comparative analysis with different models with proposed model 

 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ResNet-101 81 84 83  83 

ResNet-152 72 74 83 72 

EfficientNet-B6 80 81 86 81 

EfficientNet-B7 68 73 77 67 

Proposed Model 96 90 96 92 

 

 

Figure 14 shows the performance comparison of various deep learning models for the diagnosis 

of ARDS with respect to parameters such as accuracy, specificity, sensitivity, and AUC. A smooth 

increase in all parameters is seen from the base model to the proposed model. Although the 

performance of ResNet-101 and ResNet-152 is moderate, an incremental increase in the values 

of specificity and sensitivity is seen in the cases of EfficientNet-B6 and EfficientNet-B7. In all cases 

– accuracy, sensitivity, specificity, and AUC – the proposed model performs the best, depicting 

its excellent discriminant property. The proposed model has been validated to yield more 

accurate results for the diagnosis of ARDS. 
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Conclusion: It was observed that incorporating various deep learning models using meta-

learning-based stacking improved the performance of ARDS detection greatly. Although 

individual models such as ResNet and EfficientNet performed satisfactorily, their weaknesses in 

terms of class-wise consistency and generalization capabilities became apparent. The proposed 

meta-learning model was able to harness the strengths of each individual model, which helped 

it perform better than others in terms of accuracy, recall, F1 measure, and AUC. Lower 

misclassification costs and robustness of the proposed method validate its practical efficiency for 

real-world applications in clinical settings, where robustness is paramount. 

The future approaches would involve the extension of the proposed framework to multimodal 

data using the addition of clinical parameters, lab results, and time information about the 

patients to more closely predict ARDS in the early stages. The integration of XAI approaches will 

also be involved to boost the interpretation and trust among the medical fields. Another 

approach would involve validation through larger collections of data as well as implementation 

in real-time CDSS. 
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