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Abstract: ARDS is a severe pulmonary condition that requires timely and accurate diagnosis in
order to reduce mortality. In this work, several deep learning architectures, including ResNet-
101, ResNet-152, EfficientNet-B6, and EfficientNet-B7, were empirically compared for the
detection of ARDS, together with a novel meta-learning—based fusion framework. The proposed
stacking-based meta learner integrates the complementary predictions from individual models
to enhance diagnostic performance. Experiments conducted on a multi-class CT image dataset
show that the proposed model yields an accuracy of 96%, recall of 96%, and F1-score of 92%
significantly higher than standalone architectures. Comprehensive evaluation using accuracy,
sensitivity, specificity, AUC, and confusion matrix analysis confirms the robustness, stability, and
superior generalization capability of the proposed approach. The results have underlined the
effectiveness of meta-learning—driven model fusion in the development of a reliable ARDS
detector, capable of clinical decision support.
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Introduction: Acute Respiratory Distress Syndrome (ARDS) is a severe life-threatening condition
characterized by rapid onset of widespread inflammation in the lungs impeding oxygenation. In
normal conditions, alveoli are air-filled sacs that provide the surface area for efficient gas
exchange between inspired 02 and the flowing blood. As schematized, normal alveoli are open
and 'dry' with 02 diffusing across the alveolar-capillary membrane with ease to meet the
metabolic requirements of the body.

In ARDS, inflammatory injury to the alveolar—capillary barrier promotes fluid accumulation within
the alveoli. Fluid accumulation decreases the surface area available for gas exchange and thickens
the diffusion barrier, thus allowing only very limited transfer of oxygen into the blood. The image
illustrates this pathologic transition, in which alveoli are partially or fully flooded, leading to an
underavailability of oxygen despite sufficient ventilation.

An important aftermath, or consequence, of gas exchange abnormalities in ARDS is a severe
degree of hypoxemia, which can very rapidly lead to failure of the respiratory system if it is not
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treated on time. ARDS patients may use either supplemental oxygen therapy or ventilator
support for their oxygenation needs. A thorough understanding of the normal vs. ARDS-altered
alveoli is a fundamental part of creating strategies for their effective management.

Related work: Recent works have tried to apply ML and Al techniques for ARDS detection,
prediction, and prognosis. These contributions have been very diverse, ranging from purely
narrative reviews summarizing available methodologies to purely data-driven predictive models
focused on detection, progression, complications, and mortality. Together, they reflect an
increasing role of ML in critical care decision-making but also point out how diverse this still is,

motivating more robust and unified modeling approaches.

Table 1: Recent work done prediction and prognosis for ARDS detection,

Reference

Objective

Methodology

Advantages

Limitations

[13] Rubulotta
et al. (2024)

Review ML tools
for ARDS
detection and
prediction in ICU
settings

Narrative review of
ML/AIl approaches
using clinical,
laboratory, and
imaging data

Comprehensive
overview of risks,
benefits, and bedside
applicability; highlights
clinical relevance

Review-based; no
experimental
validation or
comparative
benchmarking

Predict ICU

Logistic regression,
Random Forest,

Strong statistical rigor;

Focused on mortality
prediction, not ARDS

rays

weighting; Grad-
CAM, SHAP

integration

14] vill . XGB
[14] Villar et a mortality in ARDS G (.JOSt on external validation; detection; relies
(2023) . multicenter ICU . . L
patients . high AUC (up to 0.91) mainly on clinical
clinical data; .
S variables
external validation
CNN with transfer
Detect ARDS using | learning + ML Multimodal fusion; high | Requires both
[15] Pai et al. combined clinical models (XGB, RF, AUC (0.925); imaging and clinical
(2022) data and chest X- | LR); ensemble explainable Al data; increased

system complexity

[16] Chiumello

Review Al
applications in

Narrative review of
Al with CT and

Highlights imaging-
driven Al potential and

Conceptual review;
lacks quantitative

[17] Lazzarini

progression to

Decision Tree on

dataset; early risk
stratification;

et al. (2024) lung imaging for . . clinical workflow .
ARDS ultrasound imaging benefits evaluation
Predict Gradient Boosting Large real-world Moderate

performance (AUC =

in ARDS patients

and HPO

compact model

et al. (2022) ARDS in COVID-19 | large-scale claims 0.69); no imaging
. comparable to
patients data L data
clinicians
. Multiple ML models . -
s weietal. | (UL L oMMy, | eation, ot
(2023) y Injury XGBoost with SHAP ' P /

direct ARDS diagnosis
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Boruta feature

. . . Robust feature
Predict mortality selection + ML

[19] Mu et al. in sepsis- models (RF selection; good AUC Retrospective design;
202 / .80); clinical i ing feat
(2025) associated ARDS XGBoost, SVM, etc.) ﬁgli\?;,ncc;mca No IMaging features
on MIMIC-III
Demonstrates . .
Random Forest on Limited to mortality

importance of temporal
clinical features;
improved AUC (0.84)

[20] Ding et al. | Early prediction of

(2024) ARDS mortality prediction; single trial

dataset

dynamic clinical data
(baseline vs day-3)

Methodology: The Lung Cancer Image Dataset (2024) offers a rich and detailed resource
designed to facilitate research in medical image analysis, particularly focused on the early
detection and classification of lung cancer. This curated dataset consists of high-resolution CT
scan images that capture the intricate morphological variations present in different lung cancer
subtypes. It serves as a valuable foundation for researchers, clinicians, and deep learning
practitioners seeking to develop, train, and validate advanced diagnostic models.

Dataset Description

The dataset is systematically divided into three subsets to ensure comprehensive analysis and
model evaluation:

Training Set (613 images): A robust and diverse set of images, carefully labeled across four
diagnostic categories, enabling effective feature learning and model generalization.

Testing Set (315 images): A distinct set of images used to assess the performance and predictive
capability of trained models on unseen data.

Validation Set (72 images): A specialized subset utilized for fine-tuning model parameters and
preventing overfitting, ensuring optimal generalizability.

CT Scan Imaging Features

Each CT scan image provides high-resolution visualization of lung structures, capturing the subtle
differences in texture, density, and shape that characterize malignant and normal tissues. These
detailed representations allow for precise feature extraction, supporting both traditional image

analysis and deep learning-based diagnostic methods.

Classes and Annotations
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The dataset encompasses four distinct and clinically significant classes:

Adenocarcinoma — representing glandular tumor formations typically found in the outer regions
of the lungs.

Large Cell Carcinoma — characterized by large, abnormal cells, often associated with aggressive
tumor behavior.

Normal — depicting healthy lung tissues, serving as a control class for baseline comparison.

Squamous Cell Carcinoma — involving the epithelial cells lining the airways, often identified
through keratinization patterns in CT scans.

Dataset

Test Train Valid

! !
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Figure 2: Overview of the Dataset

In the proposed framework, an end-to-end deep learning-based ensemble method is used for
classifying coronavirus, normal, and pneumonia classes from chest radiograph images
automatically. In this proposed work, the process of classifying chest radiograph images begins
with prepossessing those collected images in order to enhance their quality and conducting
exploratory data analysis of those prepossessed chest radiograph images. In the next phase, the
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preprocessed chest radiograph images are simultaneously fed to robust backbone networks,
such as ResNet-101, ResNet-152, EfficientNet-B6, and EfficientNet-B7, to extract distinct and
representative deep feature maps. The outputs of the respective networks are combined by the
meta-learner, which effectively learns different network capabilities to improve the ensemble
model's predictive performance. Finally, the ensemble model provides the last class prediction
for coronavirus, normal, and pneumonia, and the proposed framework evaluates the ensemble
model using rigorous training, test, and validation processes, while the accuracy of the ensemble
model is analyzed in terms of different accuracy metrics, such as accuracy, precision, recall, and

Fl-score.
Preprocess Data Perform EDA
¥
l’ 4 ¥ l
{ RESNET 101 J RESNET 152J {EfficieniﬂetBBJ { EfficientNetB7 J
| | \ |
Meta Learner
[ normal
‘ Training Testing
and Validation
Result Analysis (Accuracy, F1-Score, Recall, precision,)
Figure 3: Proposed Model
Result:
1. Accuracy

Proportion of correctly predicted observations (both true positives and true negatives) out of the total
observations.

TP +TN
TP +TN + FP+ FN

Accuracy =
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2. Sensitivity (Recall or True Positive Rate)
Proportion of actual positives correctly identified.

TP

()

3. Specificity (True Negative Rate)
Proportion of actual negatives correctly identified.

TN

SpE‘CiﬂC lt“jf = W

(3)
4. AUC (Area Under the ROC Curve)
o Definition: Measures the ability of the model to distinguish between classes.
¢ Not a simple formula like others — it is calculated from the ROC curve, which plots TPR vs. FPR
at various thresholds.
¢ Interpretation: AUC ranges from 0 to 1.
o AUC =1 - perfect classifier
o AUC=0.5- random guessing

Abbreviations:
e TP: True Positives
e TN: True Negatives
e FP: False Positives
e FN: False Negatives

The training and validation curves help in understanding the learning ability and generalization
ability of the proposed approach over the epochs. From the accuracy plot, it is evident that the
proposed approach leads to a steep increase in the training accuracy over the first few epochs
before finally converging near 99%, thereby suggesting effective learning of features and the
ability of the proposed approach in modeling complex relationships using high-capacity models.
The accuracy of the proposed approach in the validation set is observed to increase steadily until
converging near the values of 85-92%, thus suggesting an effective generalization, though with a
slight change in the accuracy, thus suggesting that there are moderate variations in the data.
Similarly, the loss graphs clearly indicate that there is a great reduction in the training loss, nearly
reaching the values of zero, thus suggesting an effective generalization in the proposed approach.
Similarly, the validation loss of the proposed approach is observed to decrease initially until
nearly hovering around a fixed range, thus suggesting that there is slight overfitting in the
proposed approach.
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Figure 4: RESNET 101 model accuracy and loss
The classification report and the confusion matrix give a fair assessment of the performance of
the model on the test dataset. The overall accuracy of 81% ensures strong multi-class
classification performance. Classification analysis reveals that Class 2 gives the best results, with
a perfect recall value of 1.00 and an 'Fl-score' of 0.99, indicating the model’s excellence in
effectively classifying objects under this class. Class 0 is the next best, but with an 'F1-score' of
0.80, while Class 1 performance is moderate with relatively low recall values of 0.69, indicating
many instances classified from Class 1 to the adjacent classes. Class 3 obtains high recall values
of 0.86 but relatively low 'precision' of 0.66, confirming the class model’s bias towards 'false
positives.' The confusion matrix again supports the results, with dominant diagonals indicating
successful classification of entries under all classes, and less diagonal entries indicating the
peculiarities of the confusions, especially Class 0 vs. Class 3, and Class 1 vs. Class 0. The 'F1-score’
values of 0.83 for macro-average and 0.81 for the weighted average again attest the relative
equality of performance of all classes, though unbalanced, proving the model’s effectiveness,
practicality, and robustness.
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Figure 5: RESNET 101 model evaluation and Confusion matrix
The performance graphs of the ResNet-152 model reflect well-optimized convergence and
generalization processes of the model during training. It is noted in the accuracy graphs that the
training accuracy of the models grows very quickly in the first phases of the training process and
converges around the value of 99%, reflecting the aptness of the models in generalization of
discriminative deep features for classification purposes. Additionally, the validation accuracy of
the models also improves continuously throughout the training phases and converges around

the values of 91%-93%, showing appropriate generalization of the models in classification of

unknown data. Furthermore, the loss graphs of the models reflect well-optimized convergence

of the models in the training phases and appropriate generalization of the models in classification
of unknown data without much overfitting.
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Figure 6: RESNET 152 model accuracy and loss
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Figure 7 shows the performance analysis and confusion matrix output for the ResNet-152 network on the
test data. Overall accuracy is at 72% for the ResNet-152 network, which is quite decent for four categories.
Class-2 is the best-performing class for the ResNet-152 network in terms of perfect recall value (1.00) and
near-perfect F1-score value (0.99), which signifies highly accurate identification. Class-1 is quite balanced
with an F1-score value (0.76), while in Class-0, the network has high precision (0.91) values compared to
the low recall (0.61), which signifies the possibility of the presence of misidentification of the images in
this class as Class-3. Class-3 signifies perfect (1.00) values in terms of recall but low (0.26) values in terms
of precision. That is, ResNet-152 network highly predicts other images as Class-3. Confusion matrix
analysis also signifies the above findings as the diagonal elements are quite high for Classes-1 and -2. On
the other hand, high confusions occur between the other two categories: Classes-0 and -3. Macro F1-
score (0.72) and weighted F1-score (0.75) values for the ResNet-152 network signify the network is quite
accurate for the dominant class.

precision  recall f1-score  support Confusion matrix in test data
100
] g.91 B.61 8.73 179 o 109 9 0
1 g.82 B.78 8.76 1] 50
2 6.98 1.06 6.99 53
1 11 42 1 6
3 0.26 1.00 0.41 23 Fi 60
=
accuracy 6.72 315 2 0 0 53 0 L 40
macro avq 6.74 B.83 8.72 315
weighted avg 8.86 .72 8.75 315 - 20
34 0 0 0 23
‘ T ‘ T Lo
0 1 2 3
Predicted label

Figure 7: RESNET 152 model evaluation and Confusion matrix

In Figure 8, the training and validation accuracy and loss functions of the EfficientNet-B6 model
are depicted. From the accuracy curve in Figure 8 it can be see that training accuracy soon
reaches 98%, and the validation accuracy reaches 90-93% after some oscillations. From the above
discussion, it is clear that the model has high accuracy. From the above two figures, it is concluded
that the training and validation losses soon reach close to zero. Both figures confirm that the
validation loss oscillates in a small range. From the above discussion, it is assured that the
EfficientNet-B6 model has high accuracy and converges fast.

EfficientNetB6
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Figure 8: EfficientNetB6 model accuracy and loss

Figure 9 illustrates the result of quantitative analysis and confusion matrix of the EfficientNet-B6
model on testing data sets, showcasing its excellent and balanced-classification accuracy. The
model's overall accuracy is found to be 80%, which ensures trustworthy multi-classification
accuracy. This model performs outstandingly on Class-2 with perfect recall of 1.00 and F1-score
of 0.99, validating its ability to make robust predictions on this class. Class-0 & Class-1 perform
reliably and with perfectly balanced accuracy, with Fl-scores of 0.82 & 0.81, respectively,
validating dependable precision-recall trade-off. Class-3 reaches a remarkably high level of
precision of 0.98 but with very low precision of 0.44, suggesting that this model accurately
predicts most instances of this class but ends up predicting a considerable number of instances
of other class as Class-3. The confusion matrix confirms above analysis with its dominance on
diagonals with least confusion between Class-0 & Class-3. Moreover, well-balanced accuracy of
this model on each class is justified by macro-averaged & weighted F1-score of 0.81 & 0.82,
respectively.
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Figure 9: EfficientNetB6 model evaluation and Confusion matrix

Figure 10 shows the training and validation accuracy and loss of the EfficientNet-B7 model to
analyze the convergence process and generalization ability of the model. The training accuracy
of the model rises dramatically in the beginning and becomes stable around 99% to 100%,
showing the model's strong ability to represent the data and extract the features accurately. The
validation accuracy of the model also shows a rising trend but remains between 85% and 91%
with little fluctuation, showing low variability in the model's generalization ability despite the
increase in epochs. On the loss side, the training loss of the model shows a dramatic decrease in
the early epochs and becomes stable around the zero line, showing that the model is converged
without much difficulty. However, the validation loss of the model in the initial epochs shows
dramatic reduction, and the rest of the epochs show little fluctuation around the stable line
without much overfitting, despite the model's complex nature, showing that the model has
strong convergence characteristics and can perform efficiently in medical image classification
tasks as well as in the ensemble model proposed in this study.
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Figure 10: EfficientNetB7 model accuracy and loss

Figure 11: Test efficiency of EfficientNetB7, showing an overall accuracy of 68% with a weighted

F1-score of 0.72. Class-wise analysis reveals very high performance for class 2 with an F1 of 0.99,

as all its samples are correctly predicted. Class 0 has a moderate performance with an F1 of 0.73

but is confused with class 3. Class 1 demonstrates high precision, low recall, while class 3 has high

recall with poor precision, indicating many false positives. The confusion matrix demonstrates

that misclassifications occur most among classes 0, 1, and 3-reflecting class imbalance effects.
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Figure 11: EfficientNetB7 model evaluation and Confusion matrix

In figure 12, the graphs are shown for training, as well as validation accuracy, as well as the loss in the

proposed system for various epochs. From the accuracy curve, it is noticed that the proposed system

converges rapidly for the first few epochs, in which the training accuracy increases closer to 100%, while

the validation accuracy converges closer to 96-98%. From the loss graphs, it is evident that training as well
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as validation loss for the proposed system converges gradually, where the validation loss follows the
training loss. the binding region between these two graphs indicates less overfitting in the proposed
system.
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Figure 12: Proposed model accuracy and loss

Figure 13 below is the evaluation results of the proposed approach with the test data. The
proposed approach is accurate in classification, yielding 96% overall accuracy. The precision,
recall, and Fl1-score in class 1 are 1.00, with a perfect classification with no mistakes. The F1-score
is 0.95, which is perfect, in class 2. The F1-score is 0.82 with a good balance in class 0, with a high
recall measure at 0.95. The results in class 3 have a high recall measure but a low precision
measure, which indicates that the results are full of false positives.
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Figure 13: Proposed Model evaluation
The comparative analysis in Table 2 clearly verifies that the proposed approach performs much
better than the baseline and the current state-of-the-art models for evaluating all criteria.
Although the ResNet-101 and EfficientNet-B6 models have a competitive accuracy rate of 81%
and 80% respectively, their precision, recall, and F1-score are still lower than the proposed
approach. The lowest results are obtained by the EfficientNet-B7 approach with the lowest
accuracy rate of 68% and Fl-score of 67% compared to other approaches. However, the
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proposed approach has the best accuracy rate of 96% with a significantly high recall rate of 96%
and F1-score of 92%.
Table 2: The comparative analysis with different models with proposed model

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
ResNet-101 81 84 83 83
ResNet-152 72 74 83 72

EfficientNet-B6 80 81 86 81
EfficientNet-B7 68 73 77 67
Proposed Model 96 0] 96 92

Figure 14 shows the performance comparison of various deep learning models for the diagnosis
of ARDS with respect to parameters such as accuracy, specificity, sensitivity, and AUC. A smooth
increase in all parameters is seen from the base model to the proposed model. Although the
performance of ResNet-101 and ResNet-152 is moderate, an incremental increase in the values
of specificity and sensitivity is seen in the cases of EfficientNet-B6 and EfficientNet-B7. In all cases
— accuracy, sensitivity, specificity, and AUC — the proposed model performs the best, depicting
its excellent discriminant property. The proposed model has been validated to yield more
accurate results for the diagnosis of ARDS.
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Conclusion: It was observed that incorporating various deep learning models using meta-
learning-based stacking improved the performance of ARDS detection greatly. Although
individual models such as ResNet and EfficientNet performed satisfactorily, their weaknesses in
terms of class-wise consistency and generalization capabilities became apparent. The proposed
meta-learning model was able to harness the strengths of each individual model, which helped
it perform better than others in terms of accuracy, recall, F1 measure, and AUC. Lower
misclassification costs and robustness of the proposed method validate its practical efficiency for
real-world applications in clinical settings, where robustness is paramount.

The future approaches would involve the extension of the proposed framework to multimodal
data using the addition of clinical parameters, lab results, and time information about the
patients to more closely predict ARDS in the early stages. The integration of XAl approaches will
also be involved to boost the interpretation and trust among the medical fields. Another

approach would involve validation through larger collections of data as well as implementation
in real-time CDSS.
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