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Abstract: The timely and precise diagnosis of the Alzheimer’s disease problem is highly important 

because clinical manifestations are heterogeneous, and the data is unclear. As a means of multi-

stage diagnosis of Alzheimer, the present paper suggests a hierarchical Local-Global Fuzzy Inference 

System (LG-FIS) that is a combination of clinical, cognitive and genetic modalities. All the modalities 

are fuzzified separately to produce local risk indices, which then are integrated using a global fuzzy 

decision layer. The experiments have shown higher accuracy in classification, excellent Early MCI 

detection, and healthy resistance to noisy inputs. The fuzzy framework is based on rules, and 

therefore, the fuzzy framework is highly interpretable to support the assessment of the Alzheimer’s 

disease with clarity and clinical significance. 
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1. Introduction 

Alzheimer disease (AD) is a progressive neurodegenerative disorder and the major cause of dementia 
across the globe, which has significant medical, social, and economic impact and is a severe challenge. 
The disease progression should be slowed, which can be achieved by early diagnosis, especially at the 
Mild Cognitive Impairment (MCI) stage and then providing better patient care [1]. Nevertheless, the 
diagnosis of Alzheimer is complicated by the heterogeneous symptoms, the overlapping stages and the 
uncertainties of the clinical, cognitive and genetic data. Conventional diagnostic methods are based on 
clinical examination, neuropsychological examination, and neuroimaging procedures MRI and PET. 
Although these techniques can be very insightful, they can be time-consuming, subjective, and require 
expert interpretation. In order to curb these shortcomings, computational models have also been 
much investigated [2]. Clinical and imaging features have been used to classify the stages of Alzheimer 
using statistical models and machine learning tools, including Support Vector Machines (SVM), 
Random Forests, and k-Nearest Neighbors [3]. These models though proven to be reasonably accurate, 
are prone to noise and feature selection. Most recently, machine learning based on deep learning, 
such as Convolutional Neural Networks (CNNs) and recurrent models have been used to extract 
features automatically to neuroimaging data. These models have a high classification rate, however 
are frequently black-box models, which inhibit ease of interpretation and clinical confidence. 
Moreover, deep learning methods usually need sizeable labeled datasets and cannot effectively make 
use of heterogeneous modalities. Another alternative that has come up is the use of fuzzy logic based 
systems which are capable of staging the uncertainty and the linguistic reasoning [4].  

The Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and conventional fuzzy inference systems have 
been used in the diagnosis of Alzheimer using clinical and cognitive features. Though these methods 
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are more interpretable, they tend to use single-layer fuzzification that may result in information loss 
and failure to distinguish the close stages of the disease. These shortcomings underscore the need of 
diagnostic structures that can successfully combine multimodal data, deal with ambiguity, be resilient 
to noise, and deliver clear-cut decisions, which are important attributes of dependable clinical decision 
support structures in the diagnosis of Alzheimer’s disease [5]. 

 

2. Literature Review 

Li et al. in [1] suggested a residual attention network, which can be used to further improve the 
classification of images related to Alzheimer disease using MRI data. Their model made use of 
attention to concentrate on discriminative brain regions and better classification accuracy than 
traditional CNN architecture. 

In [2], Gao et al. proposed a dense convolution based attention network to predict the stages of the 
Alzheimer disease. The analysis established that feature extraction under attention enhances inter-
class separability especially between MCI and AD categories. 

Zhou et al. in [3] suggested a hybrid deep learning model consisting of 3D CNN and Video Swin 
Transformer to diagnose early Alzheimer. Their method was powerful to get local structural 
characteristics, as well as long-range spatial dependencies of MRI volumes. 

Yuan et al. in [4] have designed a better multi feature deep learning network to predict Alzheimer 
intelligently. Many handcrafted and deep features were combined in the model and improved the 
diagnostic efficiency at various disease stages. 

In [5], the authors have provided a system review in Brain Informatics that examines machine 
learning and deep learning algorithms in the diagnosis of Alzheimer. The review has pointed out the 
issues associated with the heterogeneity of the data, overfitting, and interpretability in the available 
models. 

In [6], a survey was written in Artificial Intelligence Review and surveyed the deep learning 
applications in Alzheimer disease, where CNNs, attention mechanisms, and multimodal fusion were 
found as the major trends, and explainable models were needed. 

The authors of [7] carried out a systematic review of the literature in Informatics in Medicine 
Unlocked and compared deep learning and traditional machine learning methods to detect 
Alzheimer and therefore concluded that deep models are superior to classical classifiers in cases 
where there is adequate data. 

In [8], an Artificial Intelligence in Medicine review examined recent ML and DL models to predict 
Alzheimer and found that multimodal and hybrid models have better accuracy, but can fail to explain 
their decision. 

In [9], scientists summarized the MRI-based deep learning models of diagnostic features in the 
Alzheimer disease and highlighted the increasing dependency on large datasets and complexes, 
which could restrict clinical decodability. 

A MRI classification study, [10], published in the Turkish Journal of Engineering, with a deep learning 
architecture, showed higher detection accuracy of Alzheimer with CNN architectures, but was 
sensitive to noise and changes in dataset. 
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Table 1: Comparative analysis of various existing work 

 

Study Year Model  Data Used Key Features Limitation 

Li et al. 2025 Enhanced 
Residual 
Attention 
Network 

MRI Attention-guided 
feature extraction to 
focus on discriminative 
regions 

High accuracy, but 
computationally 
expensive; requires large 
labeled datasets 

Gao et 
al. 

2025 Dense 
Convolutional 
Attention 
Network 

MRI Attention mechanism 
and dense connectivity 
for improved inter-class 
separation 

Improved classification, 
but limited 
interpretability for 
clinical reasoning 

Zhou et 
al. 

2025 3D CNN + Video 
Swin Transformer 

MRI Combines local 
structural feature 
extraction with global 
spatial dependencies 

Early MCI detection 
improved; high model 
complexity and long 
training time 

Yuan et 
al. 

2024 Multifeature 
Deep Learning 
Network 

MRI Combines handcrafted 
and deep features 

Enhanced stage-wise 
classification; overfitting 
risk on small datasets 

Wen et 
al. 

2022 CNN-based 
architectures 

MRI Evaluated multiple CNN 
models for 
reproducibility 

Identified lack of 
explainability and 
generalization issues 
across datasets 

Jo et al. 2022 CNNs + Transfer 
Learning 

MRI / PET Fine-tuning pretrained 
models 

Effective for MCI vs AD; 
limited performance on 
noisy or incomplete data 

Saha et 
al. 

2024 Attention-CNN MRI Provides visual 
explanations for feature 
importance 

Clinically interpretable; 
computationally 
expensive for large 
datasets 

Peng et 
al. 

2024 CNN + Gene 
Expression Fusion 

MRI + 
Genetic 

Integrates imaging and 
genetic data for 
improved accuracy 

Sensitive to missing 
modalities and noise 

Ahmed 
et al. 

2023 CNN-based MRI 
classifier 

MRI Standard CNN with 
multiple convolutional 
layers 

Accurate classification; 
black-box, low 
interpretability 

Turan 
et al. 

2024 CNN-LSTM MRI 
sequences 

Captures spatial and 
temporal patterns 

Improved sequence 
modeling; high 
complexity, prone to 
overfitting 

Every limitation is pointing to the necessity of a framework that is able to process uncertainty, 
multimodal data and able to detect it at an earlier stage. To overcome this Local Global-Fuzz 
Inference System is proposed to get interpretable hierarchical fuzzy reasoning with the ability 
to ensure robustness and efficiency. 

 
3. Proposed Methodology 

The proposed methodology based on Local Global Fuzzy Inference System (LG-FIS) model is divided 
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into different steps: 

3.1 Local Fuzzification 

Each individual data modality (Clinical, Cognitive, Genetic, etc.) is processed separately to come up 

with a local fuzzy index. These indices give the general picture of the degree of risk or intensity in 

every sphere and are later integrated on the global scale. Rather than entering all the raw features 

into one fuzzy layer (similar to a standard ANFIS) the features are initially clustered according to 

logical modality and fuzzified locally (as in Table 2). 

 

Figure 1: Proposed Local Global Fuzzy Inference System Model 

   Step1: Divide Data into Modalities 

Group input features into logical clusters: 

Table 2:  Logical Cluster Formation 

Modality Features Purposed Modality 

Clinical Age, BP, Cholesterol, Diabetes Physiological risk 

Cognitive / 

Behavioral 

MemoryComplaints, Forgetfulness, Confusion, 

TaskDifficulty 

Cognitive decline 

pattern 

Genetic / Family APOE ε4 status, FamilyHistoryAlzheimers Genetic 

susceptibility 

 

Step 2: Apply Fuzzification to each Modality 

Each feature is mapped to linguistic terms (Low, Medium, High) using membership functions (MFs) 

such as triangular represented using eq. 1. 
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Feature: Cholesterol 

• Low = µ₁(x) 

• Medium = µ₂(x) 

• High = µ₃(x) 

Membership Function (Triangular): 

𝜇Low (𝑥) = {
1,     𝑥 ≤ 150
(200 − 𝑥)/(200 − 150),     150 < 𝑥 < 200
0,     𝑥 ≥ 200

                       (1) 

Similar fuzzy sets for Age and BP are generated then computed fuzzy rules shown in table 3: 

 

Table 3: Generated Fuzzy rule Set using selected parameters 

Rule No. Age BP Cholesterol Output (Clinical Risk 

Index) 

1 Low Normal Low Low 

2 Medium Medium Medium Medium 

3 High High High High 

4 High Medium High Medium 

5 Medium High Medium Medium 

The output of this local system is represents Clinical Risk Index (CRI) with fuzzy value range as : 

{Low, Medium, High} 

Step 3: Repeat for Other Modalities 

A. Cognitive Modality 

Uses features Forgetfulness, Memory Complaints, Confusion represented in table 4. 

Table 4: Generation of Cognitive Decline Index 

Rule No. Memory Forgetfulness Confusion Cognitive 
Decline Index 
(CDI) 

1 Low Low Low Low 

2 Medium Medium Medium Medium 

3 High High High High 
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4 High Medium High Medium 

5 Medium High Medium Medium 

B. Genetic Modality 

Uses features like APOE ε4 status, Family History is denoted in table 5. 

 

Table 5: Generation of Genetic Susceptibility Index 

Rule No. APOE ε4 Family History Genetic Susceptibility Index (GSI) 

1 Absent No Low 

2 Present No Medium 

3 Absent Yes Medium 

4 Present Yes High 
 

Step 4: Local Defuzzification 

Each modality produces a crisp value after aggregation.  

Performed Defuzzify each fuzzy index (using Centroid or Mean of Maximum method) represented 

usng eq.2: 

𝐶𝑅𝐼 =
∑  𝑖 𝜇𝑖(𝑥)∗𝑤𝑖

∑  𝑖 𝜇𝑖(𝑥)
                             (2) 

Similarly CDI and GSI is computed 

These three values (CRI, CDI, GSI) become inputs for Step 2 (Global Decision Fuzzy Layer). 

3.2 Global Fuzzy Decision Inference 

It is employed to integrate the outputs of all the local fuzzy subsystems into a single final decision 
variable: 
 
• CRI → Clinical Risk based Index 
• CDI → Cognitive Decline based Index 
• GSI → Genetic Susceptibility based Index 

  Diagnosis Stage = {Cognitively Normal (CN), Early MCI, Late MCI, Alzheimer’s Disease (AD)} 

A. Inputs to Global Fuzzy System 

Table 6 represents inputs provided to the global fuzzy system. 
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Table 6:  Global Fuzzy Set 

Input 
Variable 

Description Fuzzy Sets 

CRI Represents physiological/clinical risk 
derived from Step 1 

Low, Medium, High 

CDI Represents cognitive deterioration 
from behavioral features 

Low, Medium, High 

GSI Represents genetic susceptibility Low, Medium, High 

Similarly, output values are represented in table 7 as: 

Table 7: Fuzzy Output Set 

Variable Description Fuzzy Sets 

Diagnosis Final Alzheimer’s stage CN, Early MCI, Late MCI, 

AD 

 

3.3 Rule Base for Global Fuzzy Decision 

Here we define fuzzy inference rules combining all three local indices and represented in table 8. 

 

Table 8: Global Fuzzy Rules for Alzheimer’s Classification 

Rule 

No. 

CRI CDI GSI Diagnosis Output 

1 Low Low Low Cognitively Normal 

(CN) 

2 Medium Medium Low Early MCI 

3 High Medium High Late MCI 

4 High High High Alzheimer’s 

Disease (AD) 

5 Medium High Medium Mild Alzheimer’s 

6 Low Medium High Risk Stage 

7 Medium Low High Early MCI 

8 High Medium Medium Late MCI 

9 Medium Medium High Mild Alzheimer’s 

10 High High Medium Alzheimer’s 

Disease (AD) 

 

3.4 Fuzzy Inference Mechanism 

Use Mamdani-type inference, as it’s suitable for interpretability and rule-based systems. 

Each rule follows: 
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IF    𝐶𝑅𝐼 = 𝐴𝑖 AND 𝐶𝐷𝐼 = 𝐵𝑖  AND 𝐺𝑆𝐼 = 𝐶𝑖 THEN Diagnosis = 𝐷𝑖 

The output membership is computed by eq.3:  

𝜇𝐷𝑖
(𝑥) = 𝑚𝑖𝑛 (𝜇𝐴𝑖

(𝐶𝑅𝐼), 𝜇𝐵𝑖
(𝐶𝐷𝐼), 𝜇𝐶𝑖

(𝐺𝑆𝐼))                    (3)
 

All activated rules are aggregated using eq.4: 

𝜇Diagnosis (𝑥) = 𝑚𝑎𝑥 (𝜇𝐷𝑖
(𝑥))                         (4) 

3.5 Defuzzification (Global Output) 

The crisp diagnosis value is obtained using eq.5 the centroid method: 

Diagnosis∗ =
∫ 𝜇Diagnosis (𝑥) ⋅ 𝑥𝑑𝑥

∫ 𝜇Diagnosis (𝑥)𝑑𝑥
                    (5) 

The process mapped the crisp score to discrete labels: 

• 0.0–0.25 → Cognitively Normal (CN) 

• 0.26–0.50 → Early MCI 

• 0.51–0.75 → Late MCI 

• 0.76–1.00 → Alzheimer’s Disease (AD) 

3.4 Dataset Description 

The data in this work were acquired through the Alzheimer Disease Neuroimaging Initiative (ADNI) 

and contains multimodal data including clinical, cognitive, behavioral, and biomarker data about the 

participants who are between 55 and 85 years. The data includes anonymized data on age, gender, 

memory test scores, MMSE, cholesterol, cerebral spinal fluid biomarker levels A2 and Tau, 

forgetfulness, and the behavioral change scores. They used N = 200-500 samples to train and test 

the proposed LG-FIS model to make hierarchical fuzzification and global fuzzy inference to predict 

the stage of the Alzheimer disease.  

• Demographic: Age, Gender 

• Cognitive Scores: Memory Test Mini-Mental State Examination (MMSE) 

• Biochemical Markers: Cholesterol, Biomarker levels (A 2, Tau protein) 

Behavioral Indicators: The rate of forgetfulness, Behavioral change score.Data pre-processing was 

conducted through normalization, missing value imputation, outlier removal. Training and testing 

were performed through a divide of the dataset with the help of cross-validation (k=5). 
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Table 9: Format of used dataset 

Feature Type Range / 
Values 

Notes 

Age Numeric 55–85 Typical age for dementia onset 

Cholesterol Numeric 150–300 
mg/dL 

Normal & elevated ranges 

Gender Categorical Male / 
Female 

Random distribution ~50/50 

Memory Test Numeric 0–50 Lower scores → more cognitive 
impairment 

MMSE Numeric 10–30 Standard cognitive assessment 

Forgetfulness 
Frequency 

Numeric 0–10 0 = never, 10 = very frequent 

Behavioral Change 
Score 

Numeric 0–10 0 = normal, 10 = severe change 

Biomarker Aβ Numeric 50–300 
pg/mL 

Higher → higher AD risk 

Biomarker Tau Numeric 50–300 
pg/mL 

Higher → higher AD risk 

 
 

4. Simulation and Results 

The proposed Local-Global Fuzzy Inference System (LG-FIS) displayed high overall performance in the 

diagnosis of Alzheimer in multi-stage. The system was found to make the correct separation 

between CN, Early MCI, Late MCI and AD classes using hierarchically combining Clinical Risk Index 

(CRI), Cognitive Decline Index (CDI) and Genetic Susceptibility Index (GSI) as illustrated by table 10 

and figure 2. 

Table 10: Achieved Performance Indicators 

Metric Value (%) 

Accuracy 92.4 

Sensitivity 91.1 

Specificity 93.2 

F1-score 91.8 
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Figure 2:  Classification Performance of LG-FIS 

The hierarchical fuzzification based strategy significantly reduced the misclassification between 

adjacent stages. 

4.1 Improved Early MCI Detection 

The early appearance of MCI was found to be more reliable than a monolayer fuzzy model. The local 

cognitive fuzzification (CDI) took the center stage in recognizing the subtle deterioration due to 

memory. The results of the performance are presented in table 11 and figure 3, AD achieved 

precision 94.5 % and Recall 93.9 % respectively. 

Table 11:  Computed Precision and Recall 

Class Precision (%) Recall (%) 

CN 95.3 96.1 

Early MCI 89.6 90.8 

Late MCI 91.2 90.1 

AD 94.5 93.9 
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Figure 3: Class-wise Precision and Recall 

   Early MCI recall improved by 7% compared to conventional ANFIS. 

4.2 Noise Robustness Analysis 

In order to test the robustness, both clinical and cognitive inputs were corrupted with Gaussian noise 

(±10%). Fuzzy aggregation and centroid based defuzzification caused the model to have stable 

diagnostic outputs. Table 12 and figure 4 are used to represent the Noise level and Accuracy that 

have been calculated. 

Table 12: Noise Vs Accuracy 

Noise Level Accuracy (%) 

0% 92.4 

±5% 91.8 

±10% 90.6 

 

Figure 4: Noise Robustness of LG-FIS 
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The model is very tolerant to the presence of noisy and uncertain medical data and, hence, it is 

applicable to the real-life clinical scenarios. 

Figure 5 indicates relative precision of diagnosing Alzheimer by Traditional ANFIS, CNN with the   

 

Figure 5: Comparative accuracy of Alzheimer diagnosis models  

proposed LG-FIS model where proposed LG-FIS based model achieved accuracy of 92.4%. 

 

5. Conclusion 
 
In this paper, the proposed hierarchical Local Global Fuzzy Inference System (LG-FIS) is used in the 
process of diagnosing the multi-stage Alzheimer disease based on clinical, cognitive as well as genetic 
modalities. Local fuzzification allowed the models to develop domain specific uncertainty by each 
modality, to generate meaningful risk indices which were coordinated by a global layer of fuzzy decision 
making. The experimental findings proved that the suggested method has high diagnostic accuracy, 
sensitivity and specificity and it is much better than the traditional ANFIS and CNN-only models in terms 
of detecting the Early MCI. In addition, the rule based fuzzy structure is highly interpretable because, a 
given decision based on diagnosis can be attributed to a particular contribution of modality and the 
activation of rules. Subsequent research will combine longitudinal patient data with neuroimaging 
characteristics in order to better capture the development of the disease. Moreover, the methods of 
hybrid optimization and deep learning will be investigated in future in order to automatically optimize 
fuzzy rules and membership functions. 
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