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Abstract: This study presents a comprehensive performance evaluation of an adaptive deep learning 

framework designed for real-time vehicle accident-avoidance systems. The framework integrates 

convolutional neural networks (CNNs) with temporal attention mechanisms and edge computing 

architectures to enable rapid threat detection and response in dynamic traffic environments. We 

evaluated the system across multiple performance metrics including detection accuracy, inference 

latency, computational efficiency, and adaptability to diverse environmental conditions. The proposed 

framework achieved 97.3% accuracy in collision threat detection with an average inference time of 23 

milliseconds on embedded hardware platforms, meeting the stringent real-time requirements for 

automotive safety applications. Field testing across 15,000 kilometers of varied driving conditions 

demonstrated the system's robustness to weather variations, lighting changes, and complex traffic 

scenarios. Our findings indicate that adaptive deep learning architectures can significantly enhance 

vehicle safety systems while maintaining computational feasibility for deployment in production vehicles. 
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1 Introduction 

 

Road traffic accidents remain a leading cause of mortality worldwide, with the World Health Organization 

estimating approximately 1.35 million deaths annually [1]. Advanced Driver Assistance Systems (ADAS) 

and accident-avoidance technologies have emerged as critical interventions to reduce collision rates and 

improve road safety [2,3]. Recent advances in deep learning have enabled sophisticated perception 

capabilities that can detect and predict potential collision scenarios with unprecedented accuracy [4,5]. 

However, deploying deep learning models in real-time vehicle systems presents unique challenges. Unlike 

conventional applications where computational resources are abundant and latency requirements are 

relaxed, automotive safety systems demand millisecond-level response times, operation under severe 

resource constraints, and absolute reliability across diverse environmental conditions. The gap between 

laboratory performance and real-world deployment remains a significant barrier to widespread adoption 

of AI-powered safety systems. 
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2 Related work 

2.1 Deep Learning in Vehicle Safety Systems 

Deep learning has revolutionized computer vision applications in autonomous driving and ADAS. 

Convolutional Neural Networks have demonstrated exceptional performance in object detection, 

semantic segmentation, and scene understanding tasks critical for vehicle perception systems [5,6,7]. 

Previous studies have explored various architectures including YOLO, Faster R-CNN, and SSD for vehicle 

and pedestrian detection [3,7,8]. 

Chen et al. (2020) proposed a multi-scale CNN architecture for collision prediction achieving 94.2% 

accuracy but with inference times exceeding 100 milliseconds, unsuitable for real-time applications. Wang 

and Liu (2021) introduced a lightweight detection framework reducing latency to 45 milliseconds while 

maintaining 92% accuracy, representing progress toward real-time feasibility [3]. 

2.2 Real-Time Processing Challenges 

Real-time processing in automotive applications requires balancing multiple competing objectives. 

Hardware constraints in embedded automotive platforms typically limit available computational power 

to 10-30 TOPS (Tera Operations Per Second), substantially lower than datacenter GPUs [9,10]. 

Additionally, thermal management and power consumption constraints further restrict sustainable 

computational loads. 

Recent work in model compression and optimization has addressed these challenges through techniques 

including network pruning, quantization, and knowledge distillation. MobileNet and EfficientNet 

architectures have demonstrated that carefully designed efficient networks can achieve competitive 

accuracy with significantly reduced computational requirements [9,10]. 

2.3 Adaptive Systems and Dynamic Networks 

Adaptive neural networks represent an emerging approach to optimizing the accuracy-efficiency trade-

off [11,12]. Dynamic architectures that adjust computational pathways based on input characteristics can 

allocate resources efficiently, processing simple scenes quickly while dedicating more computation to 

complex scenarios requiring detailed analysis. Multi-exit networks and early-exit strategies have shown 

promise in achieving variable inference times [12]. However, limited research has explored adaptive 

approaches specifically for vehicle accident-avoidance applications where reliability and safety criticality 

impose additional constraints. 

 

3. Methodology 

3.1 System Architecture 

The proposed framework comprises three primary components: a perception module, an adaptive 

inference engine, and a decision-making system [5]. 

3.1.1 Perception Module 

The perception module employs a modified EfficientNet-B3 backbone optimized for automotive scene 

understanding. The architecture includes: 

• Multi-scale feature extraction with depth wise separable convolutions 

• Attention mechanisms for focusing on salient regions [12] 

• Temporal fusion module integrating information across video frames 



  

SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

• Parallel detection heads for vehicles, pedestrians, cyclists, and obstacles 

The backbone network processes input images at 640×384 resolution, balancing detail preservation with 

computational efficiency. Feature maps at multiple scales enable detection of objects ranging from distant 

vehicles to nearby pedestrians. 

3.1.2 Adaptive Inference Engine 

The adaptive inference engine dynamically adjusts computational allocation based on scene complexity 

metrics. A lightweight complexity estimator analyzes each input frame to determine: 

• Number and density of objects in the scene 

• Presence of high-risk elements (pedestrians, intersections, adverse weather) 

• Motion patterns indicating potential collision trajectories 

• Current computational load and available resources 

Based on this analysis, the engine selects one of three processing modes: 

1. Fast Mode: Streamlined inference for simple, low-risk scenarios (15-20ms latency) 

2. Standard Mode: Full model inference for typical driving situations (20-30ms latency) 

3. Detailed Mode: Enhanced processing with temporal analysis for complex, high-risk scenarios (30-

45ms latency) 

3.1.3 Decision-Making System 

The decision-making component fuses perception outputs with vehicle dynamics data (speed, 

acceleration, steering angle) and uses recurrent neural networks to predict collision probabilities over a 

3-second horizon. When collision risk exceeds predetermined thresholds, the system generates warning 

signals or trigger automated avoidance maneuvers. 

3.2 Training Methodology 

3.2.1 Dataset Preparation 

Training data comprised multiple public and proprietary datasets: 

• nuScenes: 1,000 hours of annotated driving data across diverse conditions 

• Waymo Open Dataset: 1,150 scenes with 3D bounding box annotations [9,12] 

• Custom Dataset: 500 hours of accident-prone scenarios including near-misses and emergency 

braking events 

Data augmentation techniques included geometric transformations, color jittering, weather simulation, 

and synthetic adversarial examples to enhance model robustness [14,15]. 

3.2.2 Training Procedure 

Models were trained using a multi-stage approach: 
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Stage 1 - Backbone Pretraining: Transfer learning from ImageNet with automotive-specific fine-

tuning 

Stage 2 - Detector Training: End-to-end training of detection heads with focal loss and IoU 

optimization 

Stage 3 - Temporal Module Training: Sequential training incorporating video sequences 

Stage 4 - Adaptive Controller Training: Reinforcement learning to optimize mode selection 

policies 

Training utilized distributed computing across 8 NVIDIA A100 GPUs with mixed-precision optimization. 

Total training time was approximately 72 hours per complete model iteration. 

 

4. Experimental Results 

4.1 Detection Accuracy Performance 

The proposed framework achieved strong performance across all detection tasks. Table 1 summarizes 

accuracy metrics on the validation dataset. 

Table 1: Detection Accuracy Results 

Object Class Precision Recall F1-Score mAP@0.5 mAP@0.75 

Vehicles 98.20% 96.80% 97.50% 96.90% 89.30% 

Pedestrians 95.70% 94.30% 95.00% 94.10% 84.70% 

Cyclists 93.80% 92.10% 92.90% 91.80% 81.20% 

Obstacles 94.50% 93.70% 94.10% 93.20% 83.90% 

Overall 96.10% 94.20% 95.10% 94.00% 84.80% 

 

Collision prediction accuracy was evaluated based on true collision scenarios and near-miss events. The 

system achieved: 

 

• True Positive Rate (Sensitivity): 97.3% 

• False Positive Rate: 2.8 per hour of driving 

• Warning Lead Time: Average 2.4 seconds before potential collision 

• Critical False Negative Rate: 0.3% (missed high-risk scenarios) 
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These results demonstrate that the framework provides reliable collision detection with acceptably low 

false alarm rates, critical for user acceptance. 3 FPS, well within real-time requirements for automotive 

applications (typically 30 FPS minimum). 

4.2 Computational Efficiency Analysis 

Model efficiency metrics demonstrate significant optimization compared to baseline architectures. 

Table 2: Computational Complexity Comparison 

Architecture Parameters (M) FLOPs (G) Latency (ms) mAP@0.5 

YOLOv8-L 43.7 165.2 47.3 92.80% 

EfficientDet-D4 52.6 190.4 52.1 93.70% 

Faster R-CNN 137.2 340.8 98.6 94.20% 

Proposed Framework 28.4 87.3 23.1 94.00% 

The proposed framework achieves comparable accuracy to larger models while reducing computational 

requirements by approximately 50-75%, enabling practical deployment on resource-constrained 

automotive platforms. Energy consumption measurements on the Jetson platform averaged 18.4 watts 

during continuous operation, within acceptable thermal and power budgets for automotive integration. 

 

5. Discussion & Result Analysis 

The experimental results validate that the proposed adaptive framework successfully addresses the 

competing demands of accuracy, latency, and computational efficiency for real-time vehicle accident-

avoidance systems. Several key findings merit discussion. 

First, the achieved inference latency of 23 milliseconds on embedded hardware represents a critical 

threshold for practical deployment. At typical vehicle speeds of 30 m/s (approximately 110 km/h), this 

latency corresponds to 0.69 meters of travel during processing. Combined with the 2.4-second average 

warning lead time, this provides sufficient margin for driver response or automated intervention. 

Second, the adaptive inference strategy proved highly effective. By dynamically allocating computational 

resources, the system maintains real-time performance while preserving accuracy in challenging 

scenarios. The 62% utilization of fast mode during typical driving indicates that full model capacity is 

unnecessary for most frames, enabling efficiency gains without compromising safety. 

 

6. Conclusion 

This research presented a comprehensive performance evaluation of an adaptive deep learning 

framework for real-time vehicle accident-avoidance systems. The framework integrates efficient neural 

network architectures, temporal processing, and dynamic resource allocation to achieve 97.3% collision 

prediction accuracy with 23-millisecond inference latency on embedded automotive hardware. 
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Extensive testing across 15,000 kilometers of varied driving conditions demonstrated the system's 

robustness across diverse environmental conditions while identifying areas requiring further 

development. The adaptive inference strategy successfully balanced accuracy and computational 

efficiency, enabling real-time operation within automotive platform constraints. 
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