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Abstract: Combining Cross-modal scientific imaging data from various imaging modes is essential for 

scientific progress, whether it's medical scans like CT or MRI, microscopy for materials, or everyday visual 

data. However, gathering everything in one place often violates privacy rules or ownership rights, limiting 

access to valuable distributed datasets in regulated fields. To tackle this, we built a federated system for 

cross-modal fusion that lets multiple sites train models together without swapping raw data. It 

incorporates differential privacy and safe aggregation to blend features from different modes while 

keeping control over local data. Tests in medical, materials, and general imaging showed our method hits 

94.2% of a centralized model's accuracy with strong privacy (ε=1.0). It also slashes data transfer by 67% 

using smart compression and manages uneven mode distribution across 15 sites. Plus, shifting knowledge 

between domains boosted specific tasks by 23% over isolated training.  This framework enables privacy-

preserving collaborative research in clinical diagnostics, materials defect detection, and distributed 

scientific data analysis without compromising regulatory compliance or intellectual property protection.  

Keywords: Federated learning, cross-modal fusion, differential privacy, scientific imaging, heterogeneous 

data integration 

 

Introduction 

Scientific imaging pulls in all sorts of data from different sources, making it tough to combine and analyse 

collaboratively. In India, rules like the 2023 Digital Personal Data Protection Act require clear permission 

for handling personal info and block easy overseas transfers [1]. Health organizations stick to the Clinical 

Establishments Act and Medical Council guidelines for patient records [2]. Labs dealing with materials 

follow Science Department policies, often guarding trade secrets under contracts. 

Federated learning has stepped up as a solution, allowing model training across sites without moving raw 

data [3]. Local models get updated on-site, and only changes like parameters or gradients are shared and 

merged centrally. This keeps things private while enabling group efforts. But most setups focus on single-

type data, such as uniform medical images or text collections [4]. Scientific work is messier: sites use varied 

tools (e.g., CT vs. electron microscopes), different processes, and data with unique patterns. 

Our survey found 83% of sites handle multiple imaging types but hold back sharing due to laws (41%), IP 

worries (32%), or tech limits (27%). In medicine, 76% of partnerships involve lengthy legal hurdles, adding 

6-14 months to projects. Materials groups report 64% of deals forbid data exports. These roadblocks 

isolate teams, slowing breakthroughs that could come from mixed datasets. 

Adding privacy layers is key, as shared updates can reveal secrets through attacks like gradient 

reconstruction, which recovers images with 78% accuracy in health apps [7]. Differential privacy fights this 

by adding tuned noise, offering solid math-backed protection, though it can hurt results if not done right 

[8]. 
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Existing tools treat federated collaboration or multi-mode blending separately. Medical federated studies 

stick to one mode [9], while fusion work assumes all data is pooled [10]. Materials science barely touches 

federated methods [11]. No system yet merges federated training, cross-modal integration, and privacy 

across diverse imaging fields. 

This work introduces an architecture with local encoders for each mode, privacy-safe merging, and 

adaptive blending. It uses clipping and noise adjusted per mode. Our contributions: (1) A tailored 

federated setup for varied scientific imaging; (2) Proof that private federated fusion nears centralized 

results with guarantees; (3) Tests in three fields, showing broad applicability beyond health to materials 

and environment monitoring. 

Related Work  

Federated learning, cross-modal fusion, and privacy-preserving machine learning have evolved as distinct 

research trajectories over the past decade. We examine how prior work addresses components of our 

problem space, identifying gaps that motivate our integrated approach. 

McMahan et al. pioneered the Federated Averaging algorithm in 2017, demonstrating that distributed 

model training could achieve convergence comparable to centralized approaches [1]. Kairouz et al. 

extended this foundation through comprehensive analysis of convergence properties under non-IID data 

distributions, revealing that statistical heterogeneity across institutions degrades model performance by 

12-34% depending on the degree of distribution shift [2]. 

Recent federated learning research has expanded to medical imaging domains. Rieke et al. demonstrated 

federated training of tumor segmentation models across six hospitals, achieving 91% of centralized 

performance while maintaining data locality [3]. Their technique that improved convergence rates by 

23%. Sheller et al. validated federated brain tumor classification across 10 institutions using the BraTS 

dataset, reporting that federated models matched centralized accuracy when training data exceeded 

1,000 cases per institution [4].  

Li et al. addressed the fundamental challenge of data heterogeneity in federated settings through 

systematic experimentation across 12 benchmark datasets [5]. They quantified three types of 

heterogeneity: feature distribution skew (institutions observe different input distributions), label 

distribution skew (class imbalance varies across sites), and temporal skew (data collection periods differ). 

Their analysis revealed that feature distribution skew impacts model performance most severely, causing 

accuracy degradation of 18-42% compared to IID baselines.  

Traditional cross-modal fusion assumes centralized training environments. Baltrusaitis et al. provided a 

comprehensive taxonomy of multimodal learning approaches, categorizing fusion strategies into early 

fusion (combining raw inputs), late fusion (integrating model predictions), and hybrid fusion (intermediate 

feature combination) [6].  

Zhang et al. developed attention-based fusion networks for medical diagnosis, integrating CT, MRI, and 

PET imaging through learned attention mechanisms that weight modality contributions based on task 

relevance [7]. Their architecture achieved 94.7% accuracy on multi-modal tumor classification, 

outperforming single-modality baselines by 12-18%. The attention mechanism learned that CT provides 

superior anatomical detail, PET captures metabolic activity, and MRI offers soft tissue contrast—weighting 

each modality accordingly during inference. However, their training protocol required centralized access 

to all three modalities simultaneously, computing joint gradients across the complete dataset. 
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Ramachandram and Taylor analyzed deep multimodal learning from an architectural perspective, 

examining how layer depth and fusion point location affect representation learning [8].  

Xu et al. proposed cross-modal contrastive learning for medical image analysis, training encoders to 

maximize agreement between different views of the same patient [9]. Their approach learned that 

corresponding CT and MRI slices should produce similar embeddings while unrelated images diverge. This 

technique improved downstream classification accuracy by 9-14% compared to supervised baselines. The 

contrastive framework required paired multi-modal data during training—a requirement incompatible 

with federated settings where institutions possess different modalities. 

Privacy-Preserving Machine Learning 

Differential privacy provides mathematical guarantees against information leakage from model 

parameters. Abadi et al. introduced the moments accountant method for tracking privacy loss during 

stochastic gradient descent, enabling tighter privacy bounds than previous composition theorems [10]. 

Their implementation added calibrated Gaussian noise to gradients, achieving ε = 2.0 privacy guarantees 

on MNIST classification with less than 1% accuracy degradation. However, scaling to high-dimensional 

medical imaging revealed that naive noise injection causes 15-30% performance loss. 

Domain-Specific Applications 

Materials science applications of machine learning remain centralized. Szymanski et al. applied 

convolutional networks to microstructure classification from electron microscopy, achieving 96% accuracy 

in identifying crystallographic phases [14]. Their dataset comprised 50,000 images from a single 

laboratory's scanning electron microscope. DeCost et al. developed automated defect detection in 

metallographic images, demonstrating that transfer learning from ImageNet pretrained models 

accelerates training convergence by 60% [15]. Both studies operated on single-modality data from 

individual institutions. 

Research Gaps and Positioning 

Existing work addresses federated learning, cross-modal fusion, or privacy preservation in isolation but 

not their intersection. Table 1 compares our approach against representative prior work across key 

dimensions: support for cross-modal fusion, federated training capability, differential privacy guarantees, 

validation across multiple scientific domains, and handling of modality heterogeneity (institutions 

possessing different modalities). 
 

Table 1. Comparison of Related Work and Proposed Approach 

Reference Cross-Modal 

Fusion 

Federated 

Training 

Differential 

Privacy 

Multi-Domain 

Validation 

Modality 

Heterogeneity 

McMahan et al. 

[1] 

No Yes No No No 

Kairouz et al. 

[2] 

No Yes No Yes No 

Rieke et al. [3] No Yes No No No 

Sheller et al. [4] No Yes No No No 

Li et al. [5] No Yes No Yes No 

Abadi et al. [10] No No Yes No No 
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Geyer et al. 

[11] 

No Yes Yes No No 

Wei et al. [12] No Yes Yes No No 

Truex et al. [13] No Yes Yes No No 

Szymanski et al. 

[14] 

No No No No No 

Liu et al. [16] No Yes No No No 

Wang et al. [17] No No Yes No No 

This Work Yes Yes Yes Yes Yes 
 

We analyzed performance characteristics of federated learning approaches across data heterogeneity 

levels to quantify the modality heterogeneity challenge. Figure 1 illustrates how existing federated 

methods degrade as institutions hold increasingly different data distributions, with our measurements 

drawn from reproducing published results on publicly available datasets. 

The technical contributions build upon foundations established by prior work while addressing their 

limitations. From privacy-preserving techniques [10, 11, 12], we implement differential privacy with 

gradient clipping and calibrated noise injection, extending these methods to handle modality-specific 

sensitivity characteristics. This integration enables new capabilities that no existing system provides the 

privacy-preserving collaborative training across institutions with heterogeneous imaging capabilities [18]. 

Key Contributions 

This work addresses a critical gap in collaborative scientific research: enabling multi-institutional studies 

across heterogeneous imaging modalities without compromising data privacy or regulatory compliance. 

While federated learning has demonstrated success in single-modality scenarios and cross-modal fusion 

thrives in centralized environments, no existing framework combines these capabilities with formal 

privacy guarantees. Our research makes four key contributions that advance the state of collaborative 

scientific imaging. Introduce a federated cross-modal fusion architecture specifically designed for 

institutional heterogeneity where participating sites possess different imaging modalities. Unlike prior 

federated approaches that assume all institutions collect the same data type with distribution skew, our 

system handles scenarios where Institution A operates CT scanners, Institution B maintains electron 

microscopes, and Institution C deploys satellite imaging systems. Second, we establish empirical 

performance boundaries for privacy-preserving federated cross-modal learning. Through systematic 

experimentation, we demonstrate that our approach achieves 94.2% of centralized model performance 

while maintaining ε = 1.0 differential privacy a level considered strong protection in privacy-preserving 

machine learning literature.  

Third, we validate our framework across three distinct scientific domains medical imaging, materials 

characterization, and environmental monitoring establishing generalization beyond single-application 

contexts. Previous federated learning research concentrates almost exclusively on medical imaging, 

leaving uncertain whether techniques transfer to other scientific disciplines. Fourth, we provide detailed 

analysis of communication efficiency and convergence characteristics under realistic network conditions. 

Our adaptive compression scheme reduces communication overhead by 67% compared to naive 

parameter sharing while maintaining convergence rates within 15% of uncompressed baselines 
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Proposed Methodology 

Our federated cross-modal fusion architecture comprises three core components: modality-specific 

encoders, privacy-preserving aggregation, and adaptive fusion mechanisms. Figure 1 illustrates the 

complete system architecture. 
 

 
 

Figure 1. System architecture of federated cross-modal fusion across institutions with heterogeneous 

imaging modalities. 

Each institution trains local encoders on private data, applies differential privacy mechanisms, and 

contributes protected parameters to the central aggregation server. The global fusion network learns 

unified representations from aggregated multi-modal features without accessing raw institutional data. 

Each institution deploys modality-specific encoders ResNet-50 for medical CT scans, VGG-16 for materials 

microscopy, and Efficient Net for environmental imagery—tailored to domain characteristics. Local 

training proceeds for T=10 epochs before parameter synchronization. The differential privacy layer 

implements gradient clipping with threshold C=1.5 and injects Gaussian noise with standard deviation 

σ=0.8, calibrated to achieve privacy budget ε=1.0 with failure probability δ=10⁻⁵. The central aggregation 

server performs weighted averaging with coefficients α=0.6, β=0.25, γ=0.15, proportional to institutional 

dataset sizes. 
 

Experimental Setup 

We validated our framework across 15 institutions: 5 medical colleges (CT, MRI, histopathology), 8 

materials laboratories (electron microscopy, spectroscopy, X-ray diffraction), and 4 environmental 

agencies (satellite, aerial, ground-based imaging). Table 2 summarizes dataset characteristics and 

institutional participation. 

Table 2. Dataset Distribution Across Participating Institutions 

Domain Institutions Modalities Total 

Images 

Training 

Split 

Validation 

Split 

Test 

Split 
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Medical Imaging 5 CT, MRI, 

Histopathology 

12,450 8,715 

(70%) 

1,868 

(15%) 

1,867 

(15%) 

Materials Science 8 Electron Microscopy, 

Spectroscopy, XRD 

18,920 13,244 

(70%) 

2,838 

(15%) 

2,838 

(15%) 

Environmental 

Monitoring 

4 Satellite, Aerial, 

Ground-based 

15,680 10,976 

(70%) 

2,352 

(15%) 

2,352 

(15%) 

Total 15 9 distinct modalities 47,050 32,935 7,058 7,057 

 

Training employed Adam optimizer with learning rate η=0.001, decayed by factor 0.1 every 30 epochs. 

Batch size varied by institutional computational capacity (32-128 images). We conducted 200 

communication rounds, with local training proceeding for 10 epochs between synchronization events. 

Baseline comparisons included centralized training (all data pooled), isolated training (per-institution 

models), and standard federated learning without cross-modal fusion. 

 

Results 

Our experiments encompass 15 institutions spanning teaching hospitals, materials research laboratories, 

and environmental agencies, processing CT scans, electron microscopy, spectroscopy, satellite imagery, 

and ground-based photography. Cross-domain transfer learning experiments reveal that models 

pretrained on one domain improve target domain performance by 23% compared to domain-specific 

training from scratch, suggesting that federated cross-modal representations capture generalizable visual 

features applicable across scientific imaging applications. In Figure 2 presents classification accuracy 

across privacy budgets for the three domains. 

 
Figure 2. Privacy Utility Treadeoff on Domains 

 

Our federated approach achieved 94.2% of centralized performance at ε=1.0, with materials science 

reaching 88.1% accuracy compared to 93.5% centralized baseline. Medical imaging attained 86.7% (vs. 
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92.6% centralized), while environmental monitoring reached 85.2% (vs. 91.8% centralized). At the 

recommended privacy level ε=2.0, performance gaps narrowed to 3-5%, demonstrating practical viability. 

Table 3 compares our approach against baselines across evaluation metrics. 

Table 3. Performance Comparison Across Training Paradigms 

Approach Medical 

Accuracy 

Materials 

Accuracy 

Environmental 

Accuracy 

Communication 

Overhead 

Privacy 

Guarantee 

Centralized 

(Baseline) 

0.926 0.935 0.918 N/A None 

Isolated 

Training 

0.784 0.812 0.759 0 MB Full 

Standard 

Federated 

0.841 0.868 0.823 1,240 MB None 

Federated + 

DP (ε=8.0) 

0.921 0.931 0.911 1,240 MB Weak 

Our Approach 

(ε=1.0) 

0.867 0.881 0.852 410 MB Strong 

 

Our compression scheme reduced communication from 1,240 MB to 410 MB per round (67% reduction) 

while maintaining convergence. Isolated training failed dramatically, confirming that institutional datasets 

alone provide insufficient diversity for robust models. 
 

Discussion 

The results highlight key insights into the practicality of privacy-focused federated cross-modal fusion in 

scientific imaging. Achieving 94.2% of centralized accuracy under strict differential privacy (ε=1.0) shows 

that robust privacy protections can coexist with high utility, countering the common view of an inevitable 

tradeoff. This is particularly relevant for Indian institutions complying with the 2023 Digital Personal Data 

Protection Act, which enforces data locality and consent rules that block traditional data centralization. 

Domain-specific outcomes reveal how inherent data variability affects results: materials science 

outperformed medical imaging (88.1% vs. 86.7%) due to more standardized protocols tied to physical 

properties, compared to the greater heterogeneity in medical scans from equipment differences and 

patient diversity. Cross-domain experiments demonstrated a 23% accuracy boost when transferring 

learned representations, indicating the model captures broad, transferable visual features rather than 

narrow domain traits. This challenges the notion that separate architectures are needed for each scientific 

field. While ε=1.0 effectively defends against known attacks like gradient inversion, future threats could 

weaken these safeguards. Adaptive noise adjustment is essential, and our flexible design supports this, 

though selecting optimal privacy levels ultimately depends on institutional risk-benefit assessments. 

 

Conclusions 

This work addressed the critical challenge of enabling a privacy-preserving federated cross-modal fusion 

framework for scientific imaging across medical, materials, and environmental domains. Using differential 

privacy (ε=1.0) and secure aggregation, it achieves 94.2% of centralized performance across 15 

institutions, reduces communication by 67%, and boosts cross-domain accuracy by 23%. Future work 
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should develop resource-asymmetric protocols, adaptive privacy mechanisms responding to emerging 

attack vectors, extended validation across astronomical and genomic imaging domains, and blockchain-

based audit systems ensuring cryptographic compliance verification for production deployment. 
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