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Abstract: Recent advancements in multimodal large language models (MLLMs) have expanded
artificial intelligence capabilities to process and reason across diverse modalities—such as text, image,
and video. However, the decision-making processes of these models remain largely opaque, limiting
their deployment in critical and trust-sensitive domains. This paper introduces an explainability-driven
extension of the Multi-Shot Multimodal Large Language Model (MS-MLLM), integrating
interpretability modules to enable transparent and trustworthy multimodal reasoning. The proposed
model combines cross-attention fusion, multi-shot contextual learning, and explainable visual-textual
inference through attention-based and gradient-based interpretability mechanisms. Experiments on
benchmark datasets—MIMIC-CXR, MS COCO, and YouTube8M—demonstrate that the proposed
framework maintains high performance (89% accuracy in medical diagnosis, CIDEr score of 112 for
image captioning, and 82% accuracy in video QA) while offering interpretable insights via heatmaps
and textual rationales. The study underscores the necessity of integrating explainability into multi-
shot multimodal learning to ensure human-aligned, transparent, and reliable Al systems for real-world
applications.

Keywords: Explainable Multimodal Large Language Models, Multi-Shot Multimodal Reasoning, Cross-
Modal Explainability, Attention-Based Interpretability.

1. Introduction

The rapid evolution of large language models (LLMs) has revolutionized natural language
understanding and generation. Models such as GPT-4, PaLM, and T5 have achieved remarkable
breakthroughs in text-based reasoning and generative tasks. However, these models are
fundamentally unimodal, relying exclusively on textual information. In contrast, most real-world
applications—spanning healthcare, autonomous systems, video surveillance, and education—
demand the integration of multiple modalities (images, text, audio, video) to achieve robust,
contextual, and explainable inference.

Multimodal large language models (MLLMs) aim to bridge this gap by combining language
understanding with visual and auditory comprehension. While prior works such as CLIP (Radford et
al., 2021), Flamingo (Alayrac et al., 2022), and BLIP-2 (Li et al., 2023) have advanced zero-shot and
few-shot multimodal learning, these models are constrained by single-instance reasoning and limited
explainability. They process only one image—text pair or video—caption pair at a time, without
incorporating historical or contextual examples, leading to a lack of adaptability and transparency in
reasoning.

Building upon our prior work on Multi-Shot Multimodal LLMs: A Unified Architecture for Cross-Modal
Contextual Inference, this paper extends that architecture toward explainable multimodal reasoning.
We introduce a framework that not only aligns multiple modalities through hierarchical cross-
attention but also integrates interpretable reasoning paths, allowing users to visualize why a
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prediction or association was made. The motivation is to develop models that are not only accurate
but also trustworthy and human-interpretable—a crucial step toward transparent Al.

2. Related Work
2.1 Multimodal Large Language Models

Recent research in multimodal language modeling has focused on aligning linguistic and visual
representations through joint embeddings. CLIP (Radford et al.,, 2021) pioneered vision-language
contrastive learning by aligning image—text pairs in a shared semantic space. Similarly, BLIP-2 (Li et al.,
2023) and Flamingo (Alayrac et al., 2022) extended this paradigm to zero-shot and few-shot
multimodal inference. However, these architectures primarily rely on static alignment and lack multi-
shot contextual reasoning—a process through which models can aggregate and interpret information
across multiple multimodal examples sequentially.

2.2 Explainable Al (XAl)

Explainability in Al aims to interpret model predictions through human-understandable reasoning.
Grad-CAM (Selvaraju et al.,, 2017), SHAP (Lundberg & Lee, 2017), and attention visualization
techniques have become key tools for understanding deep networks. However, these methods are
often applied post-hoc, meaning explanations are derived after inference rather than embedded
within the model’s reasoning. Recent works have begun integrating interpretability into model
architectures as shown in table 1, but this remains nascent in multimodal domains.

Table 1. Compares benchmarking works

Model Modalities Key performance metrics Limitations
supported
FLAVA Vision + | Evaluated across ~35 tasks (vision | ¢ Slightly weaker on pure
(2022) [10] Language recognition, language, vision-&- | vision tasks compared to

(text) (image | language). Outperforms many | specialized vision models (e.g.,
encoder + text | uni-modal or simpler dual-modal | CLIP)

encoder + | models on multimodal tasks | ¢ Still relatively moderate
joint) (image-text, VQA). Eg: “works | scale versus the largest
significantly better on language | models

and multimodal tasks while | ® May have lesser support for
slightly worse than CLIP on some | large context length / video /
vision-only tasks action modalities

PaLM-E Vision + | The largest variant (“562B” | ¢ Very large size - heavy
(2023) [11] Language + | parameters) achieved state-of- | compute & memory demands
Embodied / | the-art on the challenging OK- | ® Being “generalist” means in
Sensor data | VQA benchmark (visual question | some tasks it may not match

(images + | answering requiring world | the best specialized vision or

robot states + | knowledge) while  retaining | robotics models

text) general language | * Embodied robotics tasks still
capabilities.Demonstrated far  from “human-level”

positive transfer from vision- | robustness
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language to embodied robotics | ® Might require lots of diverse

tasks.) multimodal data for fine-

tuning
PaLl / PaLI-3 | Vision + | PaLl is trained with large | ¢ Even though “smaller”, still
(2022/2023) | Language multilingual image-text dataset | heavy for many deployments
[12] (multilingual (10B image-text pairs, 100+ | ¢ Multilingual / image-text
image-text languages) and achieves state-of- | tasks measured — fewer
tasks) the-art on multilingual | results on e.g.,, embodied

captioning, VQA, scene-text | action, video, 3D
understanding. PaLl-3 (5B | ® Might not match largest
parameters) shows that smaller | models on “world reasoning”
scale can still achieve strong | and long-context tasks

performance.
Kosmos-1 Vision + | The model is claimed to handle | ¢ Details/metrics less well
(2023) [13] Language text, image, OCR-free document | publicised compared to some
(and images, and tasks like visual Q&A, | others e Likely still in research
perception image recognition via text | /less open for production
generalised) instructions. ¢ Performance on very large
scale image/robotic domains
yet to catch up
Gemini Multimodal: As described, Gemini supports | ¢ While multimodal, public
(2023-24) Text + Image + | interleaved modalities (image, | quantitative performance
[14] Audio + Video | video, audio) with large context | metrics (especially for
(multimodal windows. image+video+audio) are less
context detailed in open literature
windows) ¢ Proprietary / less research

transparency in some cases ®
The complexity and cost of
training/inference are very
high

Despite progress in multimodal and explainable Al, there remains a lack of unified frameworks that
can perform multi-shot contextual inference while maintaining transparent interpretability. Our
proposed model addresses this by embedding explainability directly into the cross-modal fusion and
inference pipeline, ensuring that explanations evolve dynamically as the model processes multimodal
examples.

3. Proposed Methodology
3.1 Architectural Overview
The proposed framework extends the T5-XXL architecture (Raffel et al., 2020) by integrating visual and

temporal encoders, enabling joint reasoning across text, image, and video modalities. Figure 1
illustrates the architecture pipeline.
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Figure 1. Overview of Explainable Multi-Shot Multimodal
LILM Architecture

Each modality is first encoded independently:

e Text Encoder: Tokenized input processed by T5’s SentencePiece tokenizer.

e Vision Encoder: Images divided into 16x16 patches and embedded using a Vision Transformer
(ViT).

e Video Encoder: Spatiotemporal features extracted via a 3D Convolutional Neural Network (3D-

CNN).

The encoded features are passed into Cross-Attention Fusion Layers, responsible for aligning
modalities.

e Layers 1-4 focus on text-to-image alignment.
e Layers 5-8 perform video-to-text grounding.

Formally,

T
Vd

Attention(@f(:xl: K-z"nmgf:a T/ifrmy(:) — soft?nam I/:Efmzyr.—

where Q, K, V represent the query, key, and value vectors of each modality.

A decoder generates output conditioned on the fused representation. The architecture is fine-tuned
using contrastive loss to minimize divergence between multimodal predictions and targets.

3.2 Explainability Integration
The novel contribution of this work is the Cross-Attention Explainability Module (CAEM), integrated
within the fusion block. It records layer-wise attention weights and saliency gradients across

modalities. Three complementary explanation modes are supported:

1. Visual Attention Maps — identify which image or video regions influence predictions.
2. Textual Attention Visualization — highlight important tokens in multimodal prompts.
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3. Cross-Modal Saliency Trails — depict how prior examples contribute to current inference.

The CAEM transforms the proposed architecture from a purely predictive model into an explainable
reasoning system—one capable of narrating its own decision pathway across text, image, and video
modalities. This aligns with the overarching goal of developing transparent, trustworthy, and
accountable multimodal LLMs for real-world deployment [15-17].

4. Explainability Pipeline

The pipeline operates both during training and inference, ensuring that interpretability is embedded
throughout the reasoning process rather than applied post-hoc. Figure 2 illustrates the Explainability
Pipeline of the proposed Explainable Multi-Shot Multimodal LLM framework.

The process begins with the Encoder Stage, where multimodal data—such as textual reports, X-ray
images, or video frames—are processed through modality-specific encoders (T5 for text, ViT for
images, and 3D-CNN for video). Each encoder transforms its respective input into a shared latent
representation. These encoded representations are passed into the Fusion Module, which performs
cross-attention-based multimodal alignment. Here, the model learns correlations across modalities
(e.g., linking “fever” in text to opacity regions in the lung image). The fusion output serves as the basis
for generating both predictions and interpretability cues.

The explainability mechanism operates during both training and inference:

1. Attention Heatmaps: Derived from cross-modal attention matrices, visualized as color-coded
overlays on input images or video frames.

2. Gradient-Based Attribution: Uses gradient backpropagation to identify features with
maximum influence.

3. Rationale Generation: The decoder produces a brief textual summary explaining the decision
(e.g., “Detected opacity in lower lung consistent with fever context”).

4. Temporal Explainability: For video tasks, sequential frame-level attention tracks are
rendered, showing how model focus evolves over time.

Explanation Maps Textual Rationale

Detected opacity
in lower lung

consistent with
Encoder —> Fusion EE— * —»| fever context

Attention Heatmap

Gradient-Based —
Attribution —

Rationale
Generation

Figure 2. Explainability Pipeline of the Proposed Framework
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These outputs provide not only transparency but also actionable insights for experts, especially in
medical or decision-critical applications.

5. Datasets and Experimental Setup
Experiments were conducted on three benchmark datasets as shown in table 2:

Table 2: Benchmarking Datasets

Domain | Dataset Description Metric
Medical | MIMIC-CXR (Johnson et al., 2019) Chest X-rays + Radiology Reports | Accuracy
Vision MS COCO (Lin et al., 2014) Image-Caption pairs CIDEr
Video YouTube8M (Abu-El-Haija et al., 2016) | Videos + Metadata Accuracy

Preprocessing
e Text: Tokenized via SentencePiece.
e Images: Resized to 224x224 pixels, normalized.
e Videos: Sampled at 16 frames per clip, encoded with 3D-CNN.
e All datasets were balanced across classes; corrupted or incomplete samples were removed.
Training Configuration
e Framework: PyTorch 2.0
e Optimizer: AdamW (learning rate = 1e-4)
e Batch Size: 8 (per GPU)
e GPUs: 4 x NVIDIA A100
e Epochs: 20
All models were evaluated under identical conditions for fairness.
6. Results and Analysis

6.1 Quantitative Results

Table 3: Models Performance w.r.t Benchmarking Datasets

Task Baseline CLIP | VILBERT | Multi-Shot Explainable Multi-Shot
(T5) LLM LLM

MIMIC-CXR 71% 74% 77% 89% 87% (+ Explainability)

(Accuracy)

MS COCO (CIDEr) 103 98 105 112 109 (+ Rationales)

YouTube8M 72% 68% 70% 82% 80% (+ Temporal Maps)

(Accuracy)

SGS Initiative, VOL. 1 NO .1 (2026): LGPR



Figure 3. Performance Comparison Across Tasks
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Figure 3. Performance Comparison Across Tasks

This figure 3 visually compares the performance of five models (T5, CLIP, ViLBERT, Multi-Shot LLM,
and Explainable Multi-Shot LLM) across three benchmarks — MIMIC-CXR (medical), MS COCO (vision),
and YouTube8M (video). Results indicate that the Explainable Multi-Shot LLM maintains near-identical
performance to the base model while offering interpretable outputs. The small trade-off in accuracy
(1-2%) is justified by the gain in transparency and traceability.

6.2 Qualitative Insights

Figure 4 illustrates qualitative examples of attention visualizations across multimodal tasks.
In the image captioning task, the attention heatmaps clearly indicate that the model focuses on the
most semantically relevant visual regions—such as the dog and ball—before generating descriptive
captions. This demonstrates that the model effectively learns contextual grounding, associating
objects in the visual scene with corresponding linguistic tokens. The color-coded overlays show high-
intensity attention in key object areas, validating that the model’s generative process is not random
but context-driven.

This behavior highlights the effectiveness of the explainability integration, where visual attention
aligns closely with human perception, reinforcing the trustworthiness and interpretability of the
model’s outputs.

Detected opacity in A dog playing with
right lung's lower zone a ball

Figure 4: Heatmap behavour
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6.3 Ablation Study
To validate component contributions, two ablation experiments were conducted as given in table 4.

Table 4: Performance Accuracy

Configuration Medical Accuracy | Video QA | CIDEr

Full Multi-Shot LLM 89% 82% 112
- Cross-Attention 77% 70% 100
— Multi-Shot Prompting 74% 68% 98

Removing either component led to substantial degradation, confirming their necessity for multimodal
contextual inference.

7. Discussion

The study demonstrates that multi-shot multimodal learning not only improves task accuracy but also
provides a pathway toward interpretable multimodal reasoning. The proposed explainability
framework offers insight into how the model associates visual cues with textual semantics. For
instance, in MIMIC-CXR, the model successfully links the term “consolidation” with opacity regions on
X-rays, a key diagnostic feature. Multi-shot prompts allow the model to build contextual priors by
observing multiple examples, leading to more stable generalization. The approach parallels how
humans learn—by referencing patterns across cases rather than from a single instance.

Despite promising results, the model incurs high GPU memory usage due to multimodal fusion layers
and attention visualization overhead. Moreover, its performance depends on the quality of
multimodal prompts; irrelevant or noisy examples can reduce inference reliability.

8. Future Work
Future work will focus on:

e Developing lightweight attention approximations to reduce computational load.

e Exploring dynamic prompt selection using reinforcement learning to improve robustness.
e Expanding the framework to include additional modalities (audio, sensor data).

e Conducting user trust studies to quantitatively assess explainability benefits.
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