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Abstract: Recent advancements in multimodal large language models (MLLMs) have expanded 
artificial intelligence capabilities to process and reason across diverse modalities—such as text, image, 
and video. However, the decision-making processes of these models remain largely opaque, limiting 
their deployment in critical and trust-sensitive domains. This paper introduces an explainability-driven 
extension of the Multi-Shot Multimodal Large Language Model (MS-MLLM), integrating 
interpretability modules to enable transparent and trustworthy multimodal reasoning. The proposed 
model combines cross-attention fusion, multi-shot contextual learning, and explainable visual-textual 
inference through attention-based and gradient-based interpretability mechanisms. Experiments on 
benchmark datasets—MIMIC-CXR, MS COCO, and YouTube8M—demonstrate that the proposed 
framework maintains high performance (89% accuracy in medical diagnosis, CIDEr score of 112 for 
image captioning, and 82% accuracy in video QA) while offering interpretable insights via heatmaps 
and textual rationales. The study underscores the necessity of integrating explainability into multi-
shot multimodal learning to ensure human-aligned, transparent, and reliable AI systems for real-world 
applications. 

Keywords: Explainable Multimodal Large Language Models, Multi-Shot Multimodal Reasoning, Cross-
Modal Explainability, Attention-Based Interpretability. 

1. Introduction 

The rapid evolution of large language models (LLMs) has revolutionized natural language 
understanding and generation. Models such as GPT-4, PaLM, and T5 have achieved remarkable 
breakthroughs in text-based reasoning and generative tasks. However, these models are 
fundamentally unimodal, relying exclusively on textual information. In contrast, most real-world 
applications—spanning healthcare, autonomous systems, video surveillance, and education—
demand the integration of multiple modalities (images, text, audio, video) to achieve robust, 
contextual, and explainable inference. 

Multimodal large language models (MLLMs) aim to bridge this gap by combining language 
understanding with visual and auditory comprehension. While prior works such as CLIP (Radford et 
al., 2021), Flamingo (Alayrac et al., 2022), and BLIP-2 (Li et al., 2023) have advanced zero-shot and 
few-shot multimodal learning, these models are constrained by single-instance reasoning and limited 
explainability. They process only one image–text pair or video–caption pair at a time, without 
incorporating historical or contextual examples, leading to a lack of adaptability and transparency in 
reasoning. 

Building upon our prior work on Multi-Shot Multimodal LLMs: A Unified Architecture for Cross-Modal 
Contextual Inference, this paper extends that architecture toward explainable multimodal reasoning. 
We introduce a framework that not only aligns multiple modalities through hierarchical cross-
attention but also integrates interpretable reasoning paths, allowing users to visualize why a 

mailto:pdf.AleemAli@lincoln.edu.my
mailto:raj2008enator@gmail.com
mailto:midhun.research@gmail.com


SGS Initiative, VOL. 1 NO .1 (2026): LGPR 

prediction or association was made. The motivation is to develop models that are not only accurate 
but also trustworthy and human-interpretable—a crucial step toward transparent AI. 

2. Related Work 

2.1 Multimodal Large Language Models 

Recent research in multimodal language modeling has focused on aligning linguistic and visual 
representations through joint embeddings. CLIP (Radford et al., 2021) pioneered vision-language 
contrastive learning by aligning image–text pairs in a shared semantic space. Similarly, BLIP-2 (Li et al., 
2023) and Flamingo (Alayrac et al., 2022) extended this paradigm to zero-shot and few-shot 
multimodal inference. However, these architectures primarily rely on static alignment and lack multi-
shot contextual reasoning—a process through which models can aggregate and interpret information 
across multiple multimodal examples sequentially. 

2.2 Explainable AI (XAI) 

Explainability in AI aims to interpret model predictions through human-understandable reasoning. 
Grad-CAM (Selvaraju et al., 2017), SHAP (Lundberg & Lee, 2017), and attention visualization 
techniques have become key tools for understanding deep networks. However, these methods are 
often applied post-hoc, meaning explanations are derived after inference rather than embedded 
within the model’s reasoning. Recent works have begun integrating interpretability into model 
architectures as shown in table 1, but this remains nascent in multimodal domains. 

Table 1. Compares benchmarking works  

Model Modalities 

supported 

Key performance metrics  Limitations 

FLAVA 

(2022) [10] 

Vision + 

Language 

(text) (image 

encoder + text 

encoder + 

joint) 

Evaluated across ~35 tasks (vision 

recognition, language, vision-&-

language). Outperforms many 

uni-modal or simpler dual-modal 

models on multimodal tasks 

(image-text, VQA). Eg: “works 

significantly better on language 

and multimodal tasks while 

slightly worse than CLIP on some 

vision‐only tasks 

• Slightly weaker on pure 

vision tasks compared to 

specialized vision models (e.g., 

CLIP)  

• Still relatively moderate 

scale versus the largest 

models  

• May have lesser support for 

large context length / video / 

action modalities 

PaLM-E 

(2023) [11] 

Vision + 

Language + 

Embodied / 

Sensor data 

(images + 

robot states + 

text) 

The largest variant (“562B” 

parameters) achieved state-of-

the-art on the challenging OK-

VQA benchmark (visual question 

answering requiring world 

knowledge) while retaining 

general language 

capabilities.Demonstrated 

positive transfer from vision‐

• Very large size → heavy 

compute & memory demands  

• Being “generalist” means in 

some tasks it may not match 

the best specialized vision or 

robotics models  

• Embodied robotics tasks still 

far from “human-level” 

robustness  
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language to embodied robotics 

tasks.) 

• Might require lots of diverse 

multimodal data for fine‐

tuning 

PaLI / PaLI-3 

(2022/2023) 

[12] 

Vision + 

Language 

(multilingual 

image‐text 

tasks) 

PaLI is trained with large 

multilingual image-text dataset 

(10B image-text pairs, 100+ 

languages) and achieves state-of-

the‐art on multilingual 

captioning, VQA, scene‐text 

understanding. PaLI-3 (5B 

parameters) shows that smaller 

scale can still achieve strong 

performance. 

• Even though “smaller”, still 

heavy for many deployments  

• Multilingual / image‐text 

tasks measured — fewer 

results on e.g., embodied 

action, video, 3D  

• Might not match largest 

models on “world reasoning” 

and long-context tasks 

Kosmos-1 

(2023) [13] 

Vision + 

Language 

(and 

perception 

generalised) 

The model is claimed to handle 

text, image, OCR‐free document 

images, and tasks like visual Q&A, 

image recognition via text 

instructions.  

• Details/metrics less well 

publicised compared to some 

others • Likely still in research 

/ less open for production  

• Performance on very large 

scale image/robotic domains 

yet to catch up 

Gemini 

(2023-24) 

[14] 

Multimodal: 

Text + Image + 

Audio + Video 

(multimodal 

context 

windows) 

As described, Gemini supports 

interleaved modalities (image, 

video, audio) with large context 

windows. 

• While multimodal, public 

quantitative performance 

metrics (especially for 

image+video+audio) are less 

detailed in open literature  

• Proprietary / less research 

transparency in some cases • 

The complexity and cost of 

training/inference are very 

high 

Despite progress in multimodal and explainable AI, there remains a lack of unified frameworks that 
can perform multi-shot contextual inference while maintaining transparent interpretability. Our 
proposed model addresses this by embedding explainability directly into the cross-modal fusion and 
inference pipeline, ensuring that explanations evolve dynamically as the model processes multimodal 
examples. 

3. Proposed Methodology 

3.1 Architectural Overview 

The proposed framework extends the T5-XXL architecture (Raffel et al., 2020) by integrating visual and 
temporal encoders, enabling joint reasoning across text, image, and video modalities. Figure 1 
illustrates the architecture pipeline. 
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Each modality is first encoded independently: 

• Text Encoder: Tokenized input processed by T5’s SentencePiece tokenizer. 

• Vision Encoder: Images divided into 16×16 patches and embedded using a Vision Transformer 

(ViT). 

• Video Encoder: Spatiotemporal features extracted via a 3D Convolutional Neural Network (3D-

CNN). 

The encoded features are passed into Cross-Attention Fusion Layers, responsible for aligning 
modalities. 

• Layers 1–4 focus on text-to-image alignment. 
• Layers 5–8 perform video-to-text grounding. 

Formally, 

 

where Q, K, V represent the query, key, and value vectors of each modality. 

A decoder generates output conditioned on the fused representation. The architecture is fine-tuned 
using contrastive loss to minimize divergence between multimodal predictions and targets. 

3.2 Explainability Integration 

The novel contribution of this work is the Cross-Attention Explainability Module (CAEM), integrated 
within the fusion block. It records layer-wise attention weights and saliency gradients across 
modalities. Three complementary explanation modes are supported: 

1. Visual Attention Maps – identify which image or video regions influence predictions. 
2. Textual Attention Visualization – highlight important tokens in multimodal prompts. 
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3. Cross-Modal Saliency Trails – depict how prior examples contribute to current inference. 

The CAEM transforms the proposed architecture from a purely predictive model into an explainable 
reasoning system—one capable of narrating its own decision pathway across text, image, and video 
modalities. This aligns with the overarching goal of developing transparent, trustworthy, and 
accountable multimodal LLMs for real-world deployment [15-17]. 

4. Explainability Pipeline 

The pipeline operates both during training and inference, ensuring that interpretability is embedded 
throughout the reasoning process rather than applied post-hoc. Figure 2 illustrates the Explainability 
Pipeline of the proposed Explainable Multi-Shot Multimodal LLM framework. 

The process begins with the Encoder Stage, where multimodal data—such as textual reports, X-ray 
images, or video frames—are processed through modality-specific encoders (T5 for text, ViT for 
images, and 3D-CNN for video). Each encoder transforms its respective input into a shared latent 
representation. These encoded representations are passed into the Fusion Module, which performs 
cross-attention-based multimodal alignment. Here, the model learns correlations across modalities 
(e.g., linking “fever” in text to opacity regions in the lung image). The fusion output serves as the basis 
for generating both predictions and interpretability cues. 

The explainability mechanism operates during both training and inference: 

1. Attention Heatmaps: Derived from cross-modal attention matrices, visualized as color-coded 
overlays on input images or video frames. 

2. Gradient-Based Attribution: Uses gradient backpropagation to identify features with 
maximum influence. 

3. Rationale Generation: The decoder produces a brief textual summary explaining the decision 
(e.g., “Detected opacity in lower lung consistent with fever context”). 

4. Temporal Explainability: For video tasks, sequential frame-level attention tracks are 
rendered, showing how model focus evolves over time. 

 

Figure 2. Explainability Pipeline of the Proposed Framework 
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These outputs provide not only transparency but also actionable insights for experts, especially in 
medical or decision-critical applications. 

5. Datasets and Experimental Setup 

Experiments were conducted on three benchmark datasets as shown in table 2: 

Table 2: Benchmarking Datasets 

Domain Dataset Description Metric 

Medical MIMIC-CXR (Johnson et al., 2019) Chest X-rays + Radiology Reports Accuracy 

Vision MS COCO (Lin et al., 2014) Image-Caption pairs CIDEr 

Video YouTube8M (Abu-El-Haija et al., 2016) Videos + Metadata Accuracy 

Preprocessing 

• Text: Tokenized via SentencePiece. 
• Images: Resized to 224×224 pixels, normalized. 
• Videos: Sampled at 16 frames per clip, encoded with 3D-CNN. 
• All datasets were balanced across classes; corrupted or incomplete samples were removed. 

Training Configuration 

• Framework: PyTorch 2.0 
• Optimizer: AdamW (learning rate = 1e−4) 
• Batch Size: 8 (per GPU) 
• GPUs: 4 × NVIDIA A100 
• Epochs: 20 

All models were evaluated under identical conditions for fairness. 

6. Results and Analysis 

6.1 Quantitative Results 

Table 3: Models Performance w.r.t Benchmarking Datasets 

Task Baseline 
(T5) 

CLIP ViLBERT Multi-Shot 
LLM 

Explainable Multi-Shot 
LLM 

MIMIC-CXR 

(Accuracy) 

71% 74% 77% 89% 87% (+ Explainability) 

MS COCO (CIDEr) 103 98 105 112 109 (+ Rationales) 

YouTube8M 

(Accuracy) 

72% 68% 70% 82% 80% (+ Temporal Maps) 
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Figure 3. Performance Comparison Across Tasks 

This figure 3 visually compares the performance of five models (T5, CLIP, ViLBERT, Multi-Shot LLM, 
and Explainable Multi-Shot LLM) across three benchmarks — MIMIC-CXR (medical), MS COCO (vision), 
and YouTube8M (video). Results indicate that the Explainable Multi-Shot LLM maintains near-identical 
performance to the base model while offering interpretable outputs. The small trade-off in accuracy 
(1–2%) is justified by the gain in transparency and traceability. 

6.2 Qualitative Insights 

Figure 4 illustrates qualitative examples of attention visualizations across multimodal tasks. 
In the image captioning task, the attention heatmaps clearly indicate that the model focuses on the 
most semantically relevant visual regions—such as the dog and ball—before generating descriptive 
captions. This demonstrates that the model effectively learns contextual grounding, associating 
objects in the visual scene with corresponding linguistic tokens. The color-coded overlays show high-
intensity attention in key object areas, validating that the model’s generative process is not random 
but context-driven. 

This behavior highlights the effectiveness of the explainability integration, where visual attention 
aligns closely with human perception, reinforcing the trustworthiness and interpretability of the 
model’s outputs. 

 

Figure 4: Heatmap behavour 
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6.3 Ablation Study 

To validate component contributions, two ablation experiments were conducted as given in table 4. 

Table 4: Performance Accuracy 

Configuration Medical Accuracy Video QA CIDEr 

Full Multi-Shot LLM 89% 82% 112 

− Cross-Attention 77% 70% 100 

− Multi-Shot Prompting 74% 68% 98 

Removing either component led to substantial degradation, confirming their necessity for multimodal 
contextual inference. 

7. Discussion 

The study demonstrates that multi-shot multimodal learning not only improves task accuracy but also 
provides a pathway toward interpretable multimodal reasoning. The proposed explainability 
framework offers insight into how the model associates visual cues with textual semantics. For 
instance, in MIMIC-CXR, the model successfully links the term “consolidation” with opacity regions on 
X-rays, a key diagnostic feature. Multi-shot prompts allow the model to build contextual priors by 
observing multiple examples, leading to more stable generalization. The approach parallels how 
humans learn—by referencing patterns across cases rather than from a single instance. 

Despite promising results, the model incurs high GPU memory usage due to multimodal fusion layers 
and attention visualization overhead. Moreover, its performance depends on the quality of 
multimodal prompts; irrelevant or noisy examples can reduce inference reliability. 

8. Future Work 

Future work will focus on: 

• Developing lightweight attention approximations to reduce computational load. 
• Exploring dynamic prompt selection using reinforcement learning to improve robustness. 
• Expanding the framework to include additional modalities (audio, sensor data). 
• Conducting user trust studies to quantitatively assess explainability benefits. 
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