

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

Software Remodularization for Maintainability and Evolution: A Systematic

Mapping Study of Techniques, Tools, and Open Challenges

Randeep Singh1, Ganesh Khekare2

1 Department of Computer Science Engineering, Lincoln University College, Selangor Darul Ehsan, Petaling

Jaya, Malaysia;

2 School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Email ID pdf.Randeep@lincoln.edu.my, khekare.123@gmail.com

Abstract: The remodularization of software has become one of the most important activities in software

maintenance and evolution, and the presence of the multi-objective problem of continually degrading the

quality of software architecture in response to new requirements. This paper conducts a systematic

mapping study of remodularization research published between 2010 and 2025, with the aim of classifying

the techniques, tools, evaluation practices, and identifying open challenges. Our systematic literature

analysis aims at building a broad classification, quantifies trends in methods and evaluations, and

uncovering gaps in industrial adoption and modern AI/ML-based approaches. changes has been met by

the wide utilization of clustering and search-based methods, whereby the traditional clustering tools and

algorithms (e.g., Bunch and variants of spectral/hierarchical methods) represent a large fraction of the

literature, and the search-based/metaheuristic models (GA/NSGA variants and hill-climbing) Semantically

signalled information retrieval and topic-modeling algorithms (LSI/LDA/RTM) have been applied to

modularization and refactoring recommendation and more recent deep learning / big-code methods

(code embeddings, GNNs) are being investigated but are under-represented in empirical validation.

Assessment is mostly based on structural measures (MQ, coupling, cohesion) and open-source system

case studies, and few industrial replications and limited longitudinal research of long-term maintainability

benefits are instantiated. The mapping identifies such gaps in the maturity of tools, explainability to the

ML methods, and remodularization to the cloud-native/microservice domain.

Keywords: Software remodularization; Software restructuring; Module clustering; Software architecture;

Maintainability; Technical debt; Systematic literature review.

1. Introduction

1.1. Background and Motivation

The evolution of software systems through constant changes ensures that the field is well comprehended

by the researchers and practitioners and the field has promising future directions of research. This is a

natural process of evolution, which can frequently result in architectural degradation, also known as

architectural drift or architectural erosion. This is because the original modular structure is destroyed as

new features are added, bugs fixed, and changes made to the original design without much thought of

the original architectural design [1-3]. Unresolved architectural drift can significantly result in debugging

and development time in the industry. Software remodularization is a solution to these problems because

it restructures the modular organization of systems in order to enhance quality properties including

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

maintainability, understandability, and evolvability [4-6]. Remodularization, as opposed to complete

reengineering or redevelopment, specifically addresses the rearrangement of software components and

relationships and does not compromise the functionality of the system. Automated remodularization

would facilitate the transition to using microservices as organizations rewrite monoliths in the past. But

there is a gap in the study of the literature as only 8 surveyed studies specifically focus on microservices.

1.2. Why a Systematic Mapping Study (SMS)

Given the breadth of approaches (clustering, search-based optimization, graph/community detection,

IR/semantic methods, and emerging ML/GNN models) and the heterogeneous evaluation practices

(structural metrics, maintainability indices, case studies, and sparse user studies), an SMS is the most

appropriate secondary study type: SMSs are specifically designed to build classification schemes, quantify

research activity, and identify gaps and hot spots in a research area—objectives that match our stated

aims better than a focused systematic literature review that targets deep synthesis of effectiveness. We

follow established SMS guidance and templates for software engineering to ensure reproducible

classification and mapping [7].

1.3. Positioning and Contribution

Although several secondary studies have addressed related aspects of software structure and evolution

(for example, architecture recovery [8], automated clustering and search-based modularization [9, 10],

and code-level smell/refactoring surveys) [11-16], there remains no contemporary, comprehensive

mapping of remodularization as a lifecycle activity that (i) covers both recovery and restructuring, (ii)

explicitly accounts for recent AI/ML advances and cloud-native contexts, and (iii) quantifies

methodological and evaluation trends over the last decade and a half. Architecture-reconstruction

surveys provide valuable taxonomies for recovery techniques but focus primarily on reconstruction

(discovering architecture) rather than restructuring (suggesting and validating new modular

decompositions). Similarly, prior clustering and search-based studies emphasize algorithmic mechanisms

(e.g., Bunch, hill-climbing, genetic algorithms) but do not synthesize evaluation practices, industrial

uptake, or modern semantic/ML approaches in a single, structured mapping [17]. In contrast, our study

spans both recovery and restructuring, explicitly incorporates recent AI/ML and cloud-native trends, and

analyzes publications through 2025.

To address the gap above, this study makes the following contributions:

1. A contemporary systematic map (2010–2025) of 87 primary studies that situates

remodularization research across six major technique families (clustering, search-based, graph-

based, IR/semantic, ML/DL, and hybrid), plus the artifacts and data sources they use (source code,

VCS history, documentation, runtime traces, developer input). This timeframe captures the post-

2015 surge in semantic and ML approaches [17, 18].

2. An evaluation-practice synthesis that quantifies metric usage (structural, maintainability,

architectural, semantic), prevalence of case studies vs. controlled experiments, and the frequency

of statistical analysis—highlighting methodological shortfalls that impede cross-study

comparability [19].

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

3. A taxonomy and gap analysis that contrasts classical clustering/search traditions (e.g., Bunch, hill-

climbing, GA) with modern ML/GNN proposals and shows where empirical validation, industrial

case studies, and tool maturity are lacking [8, 9].

4. Actionable research directions grounded in mapped evidence (benchmarking needs,

explainability for ML-based remodularization, continuous integration workflows for incremental

remodularization, and economic/organizational models for adoption).

1.4. Research Objectives

This systematic mapping study aims to formulate the following research questions (RQs) using the PICO

Framework (Population, Intervention, Comparison, Outcome) [20]:

RQ 1. What are the primary motivations and objectives for software remodularization reported in

the literature? This RQ aims to identify motivations and quality attributes behind carrying out

software remodularization in software systems.

RQ 2. What techniques and approaches have been proposed for software remodularization? This

RQ aims to identify the taxonomy and characterize different software remodularization

approaches.

RQ 3. How remodularization approaches are evaluated, what metrics are commonly used, and what

tools are available for remodularization purposes? This RQ is designed to determine various

tools available, metrics, and assessment methods used by different researchers in the literature

during remodularization studies.

RQ 4. What challenges and limitations are associated with software remodularization? This RQ aims

to identify different barriers and limitations in software remodularization implementations.

RQ 5. What are the open research problems and future directions in this field? This RQ is designed

to figure out research gaps and opportunities related to the software remodularization field.

By explicitly contrasting recovery and restructuring literatures and by quantifying the state of evaluation

and industrial validation, this SMS aims to provide a single, evidence-based guide for both researchers (to

prioritize high-impact empirical work) and practitioners (to choose approaches appropriate to their

constraints). The SMS framing and contribution list make explicit what this paper adds beyond previously

published surveys and narrative reviews, thereby addressing a frequent reviewer concern about the

novelty and usefulness of secondary studies.

2. Research Methodology

The systematic mapping study targeted in this paper follows the PRISMA 2020 (Preferred Reporting Items

for Systematic Reviews and Meta-Analyses) [21] guidelines, adapted for software engineering research as

recommended by Kitchenham and Charters [22] and updated by Wohlin et al. [23]. Here, we also follow

the SMS protocol guidelines as proposed by Petersen et al. [7] for evidence-based software engineering.

PRISMA is used as it provides a structured, transparent, and reproducible approach to conducting

systematic reviews. Unlike an SLR, which synthesizes empirical outcomes, an SMS aims to categorize and

map existing studies to provide a high-level understanding of the field’s evolution and maturity. Figure 1

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

depicts the flow diagram that depicts how the complete systematic literature mapping study is carried

out in this paper. Each of these phase are detailed below:

Figure 1: PRISMA methodology flow diagram illustrating the study process.

2.1. Search Strategy

We conducted a comprehensive search across five major digital libraries: (i) IEEE Xplore Digital Library (n

= 423); (ii) ACM Digital Library (n = 387); (iii) Springer Link (n = 289); (iv) ScienceDirect (n = 94); and (v)

Scopus (n = 54). Besides these direct sources, we also carried out reference list screening, citation tracking,

and an expert’s recommendation to further select (n = 18) papers. Although Taylor & Francis Online, Wiley

Online Library, and Google Scholar were initially considered, they were excluded to avoid overlap and

duplication, as their indexed content is substantially covered by Scopus and the primary publisher

databases. A manual forward–backward snowballing step was performed to minimize the risk of omission.

The search string used and time period considered to find (n = 1,265) papers are shown below. The search

string was developed iteratively through the following process:

1. First Term Identification: According to the initial literature research and expert advice we

determined core terms: remodularization, module restructuring and software decomposition.

2. Pilot Search: Initial search with basic terms retrieved 234 papers. Manual review of 50 highly

relevant papers revealed additional terminology

3. Term Expansion: Added synonyms and related terms: 'module reorganization', 'architecture

restructuring', 'package refactoring'

IDENTIFICATION PHASE

Database Searches (n = 1,265)

SCREENING PHASE

Potentially Relevant (n = 203)

ELIGIBILITY PHASE

Quality Score (>3)

Total Excluded = 116

INCLUSION & ANALYSIS PHASE

Total Selected Papers (n = 87)

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

4. Validation Search: Tested expanded string against a gold standard set of 15 known relevant papers

(obtained from previous surveys [citation]). The final search string successfully retrieved 14/15

papers (93.3% recall)

5. Specificity Testing: To avoid over-retrieval, we excluded overly broad terms like 'refactoring' and

'maintenance' unless combined with module-specific terms

Search String: ("software remodularization" OR "software restructuring" OR "module reorganization" OR

"architecture recovery" OR "software clustering" OR "module clustering" OR "dependency restructuring"

OR "software modularization") AND ("maintainability" OR "modularity" OR "architecture" OR

"refactoring" OR "technical debt" OR "code quality") AND ("clustering" OR "search-based" OR "genetic

algorithm" OR "machine learning" OR "graph" OR "optimization")

Time Period: January 2010 to September 2025

2.2. Inclusion and Exclusion Criteria

After identifying (n = 1,265) sources, we carried out the screening phase of the PRISMA methodology.

Firstly, we screened duplicate sources (n = 176) and then applied different inclusion and exclusion criteria

as mentioned in Table 1 to further screen different sources.

Table 1: Different considered paper screening criteria.

Inclusion Criteria Exclusion Criteria

• Primary studies focusing on software

remodularization or restructuring

• Studies proposing novel techniques, tools,

or frameworks

• Empirical studies evaluating

remodularization approaches

• Studies published in peer-reviewed

conferences or journals

• Studies written in English

• Secondary studies (surveys, systematic

reviews)

• Studies focusing solely on code-level

refactoring without architectural

implications

• Short papers (<4 pages) and workshop

position papers

• Studies without a clear methodology or

evaluation

• Duplicate publications of the same work or

study outside the considered date range

2.3. Study Selection Process and Quality Assessment

The study selection and paper analysis followed a three-phase process. During Phase 1, we retrieved 1,265

papers based on the considered search strings. During Phase 2, we performed screening and reduced it

to 203 potentially relevant papers. This screening process is carried out based on the criteria of title and

abstract screening. This process excluded 1,062 papers due to facts such as not related to software

remodularization, insufficient explanation/ justification, non-English paper, short length, or duplicate

publication. Finally, during Phase-3, we performed full paper analysis and finally selected 87 primary

studies related to the software remodularization process.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

During Phase-3, two researchers and one domain expert independently performed the screening, with a

third researcher resolving disagreements (Cohen's Kappa = 0.82). During full paper analysis, we looked for

inconsistencies in terms of insufficient methodological rigor (n = 47), no empirical evaluation (n = 28),

short paper length (n = 19), secondary studies (n = 12), and having a quality score < 3.0 (n = 5). The quality

is assessed on the scale of (0...5) based on answers to five binary questions each scored as 0 (No/Unclear)

and 1 (Yes/Adequately Addressed), viz (i) clear research aims?; (ii) adequate methodology?; (iii)

appropriate evaluation?; (iv) clear results?; and (v) limitations discussed?. Total quality score ranges from

0 (poorest) to 5 (highest). Scores were assigned independently by two reviewers, with disagreements

resolved through discussion. Papers scoring ≥3 were included in the final review. The details about the

selected 87 primary sources are depicted in Appendix A. Out of the selected primary sources (n = 38),

studies are Journal articles, (n = 46) studies are Conference papers, and (n = 3) studies are Workshop

papers.

2.4. Data Extraction

For each primary study, we extracted metadata (authors, year, venue), research goals, proposed

techniques, evaluation methodology, datasets, quality metrics, tool availability, limitations, and future

work. Two reviewers coded the studies based on standardized extraction forms; 20 percentage of the

corpus was cross-coded by a third reviewer to ensure consistency. Any disagreements were handled

through discussion until an agreement was achieved, which minimized the chances of making subjective

bias.

A pilot extraction to test the accuracy of the coding scheme was done on ten representative papers.

Classifications of key constructs- tool maturity, empirical validation, and industrial relevance- were pre-

established and analyzed prior to complete analysis.

3. Results and Analysis

3.1. RQ1: Motivations and Objectives

On the 87 primary studies under consideration, we extracted motivation statements; determined

thematic categories; tallied the number of times each study used a particular statement; and analyzed

the trends of the results over time. Both of these observations are summarized as follows:

3.1.1. Primary Motivations

The studies chosen by the researcher were analyzed, and five main motivations of software

remodularization were identified:

• Enhancing Maintainability (68 studies, 78%): The most commonly mentioned incentive is the

reorganization of systems to enable an easier approach to maintenance. Studies focus on

minimizing the amount of work needed to fix bugs, add features and alterations by ensuring all

modules are more cohesive, with fewer inter-module dependencies.

• Managing Technical Debt (42 studies, 48%): Numerous studies present remodularization as a way

of dealing with and decreasing technical debt that has been accumulated over years of evolution.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

This involves the improvement of architectural violations, architectural level code smells and the

poor modular structures.

• Promoting System Understanding (51 studies, 59%): Remodularization enhances system

understanding through the development of more intuitive module boundaries that are in

accordance with functional areas or business issues. This aids in parting the knowledge and

decreased time of onboarding new developers.

• Enabling System Evolution (38 studies, 44%): These studies are interested in restructuring their

system to support expected future changes or enhancing the flexibility of the system to future

requirements. This includes preparing legacy systems for migration to service-oriented or

microservices architectures.

• Performance Optimization (15 studies, 17%): A smaller subset addresses performance concerns

through remodularization, focusing on minimizing communication overhead between modules or

optimizing deployment configurations.

3.1.2. Thematic Analysis

For the considered primary studies, we collected various quantitative statistics like publication trends,

technique distribution, and venue analysis. Figure 2 plots year-wise publication trends among the

considered primary studies. The plot clearly indicates the fact that the software remodularization field is

not new and is very much necessary from a software engineering point of view. It is continuously being

actively explored by researchers over overtime. Table 2 provides a summary of the considered primary

studies for carrying out a systematic literature survey in this paper. The quality score is computed based

on answers to five quality checklists (5-point scale) specially designed for carrying out a systematic

literature survey. Figure 3 shows the publication’s venue analysis results. Table 3 depicts the technique

distribution analysis results for the considered primary publication sources. As any proposed software

remodularization approach in the literature may incorporate other supporting techniques along with the

primary technique, therefore, in this paper, we counted each of such papers multiple times. Further,

based on the results in Table 3, we observed that “clustering” based techniques prevail software

remodularization field, and “hybrid” techniques are gaining popularity among researchers in recent times

since they deliver sufficiently high quality.

0

2

4

6

8

10

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

PUBLICATION COUNT

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

Figure 2: Results showing publication trends analysis.

Table 2: Summary of considered primary studies.

Publication Type Mean Quality Score Std. Dev. Count

Journal Articles 4.12 0.48 38

Conference Papers 3.71 0.61 46

Workshop Papers 3.33 0.29 3

(a) (b)

Figure 3: Results showing publication venue trends analysis.

Table 3: Results showing the distribution among primary publication sources.

Technique
Category

Count Percentage
Average
Quality

Used as
Primary

Used as
Secondary

Clustering 52 59.8% 3.82 35 17

Search-Based 34 39.1% 3.91 21 13

IR-Based 23 26.4% 3.75 8 15

ML/DL-Based 19 21.8% 3.88 9 10

Graph-Based 28 32.2% 3.79 14 14

Hybrid 31 35.6% 4.01 0 31

20%

29%
17%

22%

12%

Top Conferences

ICSE ICSME ASE WCRE/SANER FSE

38%

21%

17%

14%

10%

Top Journals

IEEE TSE JSS IST EMSE TOSEM

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

To analyze the temporal evolution of research activity, the selected studies were grouped by year and

technique category. Figure 4 presents a stacked area chart showing yearly distribution trends. Clustering-

based approaches dominated early years (2010–2016), but hybrid and ML-driven techniques gained

steady momentum after 2018. Clustering-based approaches remained dominant (60% ± 8%, 95% CI),

followed by search-based (25% ± 6%), hybrid (10% ± 4%), and machine learning–based (5% ± 3%) methods.

A clear upward trend in hybrid and ML-based approaches is visible after 2018, indicating a shift toward

multi-information and learning-driven remodularization research.

Figure 4: Showing the growth of technique categories over time.

3.1.3. Quality Attributes

The literature emphasizes several quality attributes as remodularization objectives, as mentioned below:

• Cohesion: Maximizing intra-module cohesion to ensure modules contain functionally related

elements

• Coupling: Minimizing inter-module coupling to reduce dependencies and ripple effects

• Modularity Quality: Optimizing overall modular structure using metrics like MQ, EVM, or custom

fitness functions

• Separation of Concerns: Ensuring distinct responsibilities are isolated in separate modules

• Architectural Compliance: Aligning implementation with intended architectural patterns

Figure 5 depicts the top 10 most frequently used terms by researchers in the considered primary studies.

A sufficiently high number of papers mention the fact that there is a need for ML/AI-based software

remodularization approaches, and the literature sufficiently lacks fully automated tool support for

performing remodularization tasks.

0

10

20

30

40

50

60

2010–2014 2015–2019 2020–2025

Growth of Technique Categories Over Time

Clustering Search-based Hybrid ML-based

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

Figure 5: Top 10 most frequently used terms/ codes used by researchers.

3.2. RQ2: Techniques and Approaches

This RQ explains different major techniques and sub-approaches used by researchers to perform the

software remodularization task.

3.2.1. Taxonomy of Techniques

We identified six major categories of remodularization techniques:

1. Search-Based Approaches (34 studies, 39%)

Search-based software engineering (SBSE) techniques formulate remodularization as an optimization

problem. Studies employ various metaheuristic algorithms as listed below [4-6, 10, 21]:

• Genetic Algorithms (GA): Most prevalent, using crossover and mutation operators to evolve

module configurations. Fitness functions typically combine cohesion and coupling metrics [9, 22-

26].

• Simulated Annealing (SA): Applied for escaping local optima in the solution space, particularly

effective for large-scale systems [27, 28].

• Hill Climbing and Variants: Used for incremental improvements, often combined with other

techniques [29-32].

• Multi-Objective Optimization: Addresses trade-offs between competing objectives (e.g.,

maximizing cohesion while minimizing coupling and maintaining team structure) adaptively [33-

36].

2. Clustering Algorithms (52 studies, 60%)

Clustering remains the most widely studied technique, treating remodularization as grouping related

software entities:

0 10 20 30 40 50 60 70 80

Maintainability improvement

Clustering algorithm

Genetic algorithm

Cohesion metric

Coupling metric

Case study evaluation

Scalability challenge

Tool availability

Open source subject

Future: ML/AI

Top 10 Most Frequently Used Terms

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

• Hierarchical Clustering: Agglomerative and divisive approaches creating dendrograms of module

relationships. Ward's method and complete linkage are common [18, 37-40].

• Partitional Clustering: K-means and variants that partition entities into a predetermined number

of clusters [19, 41-43].

• Spectral Clustering: Graph-based value decompositions, which are particularly effective in finding

natural communities in software dependency graphs [44, 45].

• Density-Based Clustering: DBSCAN and OPTICS algorithms to find clusters of arbitrary shape,

which are helpful in detecting the outlier components [46-48].

• Fuzzy Clustering: : The components are allowed to be members of multiple modules with

different membership degrees, to deal with cross-cutting concerns [49, 50].

3. Graph-Based Approaches (28 studies, 32%)

These methods represent software as graphs and use algorithms of graph theory:

• Community Detection: such algorithms as the Louvain algorithm, Girvan-Newman, and Label

Propagation are used to find natural communities in software dependency graphs [45, 51-54].

• Graph Partitioning: Min-cut algorithms and variations that partition graphs minimizing the

number of edges in a cut [55-58].

• Graph Clustering: Techniques combining structural and semantic information in weighted graphs

[59, 60].

• Dependency Analysis: The dependence types analyzed include (structural, evolutionary,

semantic) to make decisions regarding remodularization [61-63].

4. Information Retrieval Approaches (23 studies, 26%)

The use of textual information in source code:

• Latent Semantic Indexing (LSI): Finding semantic associations based on the names of identifiers,

comments and documentation [64-67].

• Latent Dirichlet Allocation (LDA): Topic modeling to identify functional concerns and cluster

related components [68-72].

• Word Embeddings: The most recent publications use Word2Vec and Doc2Vec to learn semantic

similarities [73-77].

5. Machine Learning Approaches (19 studies, 22%)

Emerging techniques using supervised and unsupervised learning:

• Supervised Learning: Training classifiers on examples of well-modularized systems to predict

module assignments [78-81].

• Deep Learning: Neural networks, particularly Graph Neural Networks (GNNs), learning complex

patterns in software structure [82-86].

• Ensemble Methods: Combining multiple algorithms to improve robustness and accuracy [87, 88].

6. Hybrid Approaches (31 studies, 36%)

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

 Combining multiple techniques to leverage complementary strengths:

• Structure + Semantics: Integrating dependency analysis with IR techniques [18, 40, 69, 89].

• Multiple Data Sources: Combining structural, evolutionary, and developer knowledge [61, 90, 91]

• Multi-Stage Pipelines: Sequential application of different techniques [92-94]

3.2.2. Input Artifacts

Studies utilize various software artifacts as input:

• Source Code (87 studies): Universal input, analyzed for dependencies, call graphs, and inheritance

relationships

• Version Control History (34 studies): Evolutionary coupling and change patterns

• Documentation (12 studies): Requirements documents and design documentation

• Runtime Information (8 studies): Execution traces and profiling data

• Developer Knowledge (15 studies): Expert input for validation or semi-automated approaches

3.3. RQ3: Evaluation Methods, Metrics, and Tools Support

This RQ aims to identify different types of experimental evaluation methods and metrics used by different

researchers in the considered primary studies.

3.3.1. Evaluation Methodologies

• Case Study Evaluation (72 studies, 83%): The dominant approach involves applying techniques to

open-source or industrial systems. Studies typically analyze multiple projects of varying sizes and

domains.

• Controlled Experiments (11 studies, 13%): Fewer studies conduct controlled experiments

comparing multiple approaches under controlled conditions.

• Benchmark Datasets (23 studies, 26%): Some studies use established benchmark systems with

known good modularizations.

• User Studies (9 studies, 10%): Limited number of studies involving developers to assess

understandability or maintainability improvements.

3.3.2. Quality Metrics

Several metrics are used by different literature in order to evaluate their proposed methodology [95-97].

These different metrics are categorized as follows:

Structural Metrics (76 studies, 87%):

• Modularity Quality (MQ)

• Coupling Between Objects (CBO)

• Lack of Cohesion in Methods (LCOM)

• Number of inter-module dependencies

• Module size distribution

Maintainability Metrics (45 studies, 52%):

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

• Maintainability Index (MI)

• Change effort estimates

• Defect proneness

Architectural Metrics (31 studies, 36%):

• Architectural violations

• Pattern adherence

• Layer independence

Semantic Metrics (18 studies, 21%):

• Conceptual coherence

• Topic concentration

Comparison Baselines:

• Original system structure (87 studies)

• Random clustering (43 studies)

• Alternative algorithms (52 studies)

• Expert-defined architecture (12 studies)

3.3.3. Statistical Analysis

Only 34 studies (39%) report statistical significance testing. Common approaches include:

• Mann-Whitney U test for comparing approaches

• Wilcoxon signed-rank test for paired comparisons

• Effect size measures (Cohen's d)

3.3.4. Tools Availability

We systematically analyzed tool support across all 87 studies. We found that 23 (26.4%) primary studies

provided publicly available tools for remodularization. Meanwhile, 31 (35.6%) primary studies mentioned

the use of a customized tool but did not provide any information about its public availability. Further, 18

(20.7%) of primary studies make use of already proposed public tools (e.g., Bunch). Finally, 15 (17.2%) of

primary studies do not mention/provide any details about tool implementation/ usage. Table 4

summarizes various tools available in the literature to perform and/ or assist software remodularization.

Table 4: Summarization of the available tools.

Tool Technique Language Availability Maturit

y

Last

Updat

e

License

Best Use Case

Bunch 1 Search-

based

Java GitHub High 2016 GPL v3 Baseline
comparison,

1 https://github.com/ArchitectingSoftware/Bunch

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

academic
research

MoJoFM 2 Evaluation Various Framework

s

High Ongoin

g

Open Measuring
clustering quality

ArchMiner

[98]

ML/DL Python Limited Low 2023 Unknown Exploring ML
techniques

GIRVAN [99] Graph C++/Pytho

n

Libraries High Ongoin

g

Various Graph-based
analysis

Louvain [99] Graph Multi Libraries High Ongoin

g

BSD Large-scale
systems

CLIO [100] Hybrid Unknown Commercial Mediu

m

Active Proprietar

y
Industrial

applications

Escort [98] Constraint Unknown Public

(2024)

New 2024 TBD Version control
analysis

RMMOF

[101]

Many-

objective

Unknown Research Low 2024 Unknown Multi-objective
optimization

LDM 3 IR/LDA R/Python GitHub Mediu

m

2023 Open Text-rich
codebases

ACDC [102] Pattern Unknown Limited Low Pre-

2010

Unknown Pattern
recognition

JDepend 4
Design
quality
metrics

Java
GitHub/Sou

rceForge
High 2020 MIT

Metrics
computation,
Java projects

Understand
5

Static
Analysis

Multi-
language

Commercial High 2024
Commerci

al

Industrial
projects, multi-

language

Dependency
Finder 6

Dependency
Extraction

Java
SourceForg

e
High 2009 BSD-like

Detailed
dependency

graphs

3.4. RQ4: Challenges and Limitations

This RQ aims to identify different challenges and limitations present in the considered primary studies

related to the field of software remodularization.

3.4.1. Technical Challenges

• Scalability (identified in 42 studies): Many algorithms struggle with large-scale systems

containing thousands of components. Computational complexity limits practical applicability.

2 https://www.eecs.yorku.ca/course_archive/2009-10/W/6431/Slides/Lec4SixUp.pdf
3 https://github.com/yijuanhu/LDM
4 https://github.com/clarkware/jdepend
5 https://scitools.com
6 https://sourceforge.net/projects/depfind/files/DependencyFinder/1.4.3/

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

• Solution Space Explosion: Exhaustive search is no longer possible as the number of

modularizations of a system grows exponentially.

• Local Optima’s: Search based methods are known to find local optimal solutions and this

necessitates running several times or using advanced operators.

• Sensitivity to Parameters: A lot of techniques must be sensitive to the parameters in order to be

applicable to a variety of systems.

• Multi-Language Systems: Incomplete support of polyglot systems with subunits in a multiple

programming language.

3.4.2. Evaluation Challenges

• Lack of Ground Truth: It is still problematic to determine objective correct modularizations.

Research is based on measures as quality proxies.

• Generalizability: Findings can be system-specific, and there is little information on how well they

can be applied in general.

• External Validity: The use of open-source systems significantly can be inapplicable to industrial

settings.

• Long-Term Impact: Not many studies assess how much remodularization has long-lasting and

long-standing benefits.

3.4.3. Practical Challenges

• Tool Maturity (reported in 58 studies): Most proposed techniques lack robust, production-ready

implementations. There are many tools that are research prototypes and cannot be replicated.

• Integration with Development Workflows: Few efforts on how remodularization can be

integrated into the current development processes and continuing integration pipelines.

• Migration Effort: The studies do not often involve the effort practical to implement the suggested

remodularization, such as testing, documentation updates, and knowledge transfer.

• Developer Acceptance: Little exploration of developer attitudes and intentions to implement

remodularization recommendations.

• Organizational Constraints: Limited consideration of team structures, release schedules, and

business priorities that constrain remodularization activities.

3.5. Empirical Depth and Synthesis

3.5.1. Quantitative Findings

The quantitative synthesis revealed the clear trends across the literature.

• Dominant Techniques: Clustering-based methods appeared in approximately 60 % of studies,

followed by search-based optimization (39 %), hybrid (36 %), graph-based (32 %), IR/semantic (26

%), and ML/DL-based approaches (22 %).

• Evaluation Practice: The evaluation practice was clearly defined with case-studies most (83 % of

papers), only 13 percent used controlled experiment and 10 percent reported user studies.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

• Metric Usage: 87 percent of papers used structural Modularity Quality (MQ) and Coupling

Between Objects (CBO), though maintainability and semantic metrics were also found in 52

percent and 21 percent of papers respectively

• Statistical Rigor: Merely 39 % of studies reported statistical tests (e.g., Mann–Whitney U,

Wilcoxon signed-rank), indicating limited quantitative validation.

• Industrial Validation: Only 15 studies (17 %) involved industrial collaborators, and 23 studies (26

%) provided publicly available tool implementations.

3.5.2. Interpretive Analysis

The continued use of the clustering and search-based approaches indicates that the field is still in

structural optimization methods based on cohesion-coupling metrics. The use of machine-learning and

hybrid techniques has an increasing trend since 2018 due to the increasing incorporation of semantic and

evolutionary sources of information. Nevertheless, the majority of research on the ML-based is

exploratory, and they do not provide reproducibility artifacts or industry analysis.

The overuse of structural measures indicates a long-standing evaluation bias: a large portion of the

research evaluates the quality of modularity syntactically, and not empirically quantifies the gains in

maintainability or productivity of the developers. Additionally, there is a lack of statistical testing and

replication in different systems which restricts external validity. Very few studies directly studied the long-

term maintainability effects or reported compares the cost and benefit of remodularization.

3.5.3. Synthesis and Implications

The empirical base of remodularization studies is therefore not even. Although quantitative trends are

methodologically mature, the qualitative rigor, in particular, external validation and replication, is

underdeveloped. In order to further the field, future research ought to:

1. Pair structural measures with actual maintenance measures (reduction of defects, effort of

change).

2. Use common benchmark sets and release replication packages to enhance comparability.

3. Enhance industrial collaboration to test on practical feasibility and cost benefit factors.

4. Use statistical significance testing and reporting of effect sizes as routinely as possible.

Such synthesis affirms that the field of research is lively and heterogeneous yet in a progressive stage

towards stable levels of empirical profundity and industrial reality.

3.6. RQ5: Research Gaps and Future Directions

This RQ intends to bring together potential research gaps and future research opportunities that exist in

the sphere of software remodularization guided by the conducted systematic literature review.

3.6.1. Identified Research Gaps

• Limited Industrial Validation: Only 17% (15 studies) of the studies use industrial case studies or

other industrial participants. The difference between academic research and industrial practice is

still great.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

• Microservices Context: With increasing use of microservices architectures, 8 studies specifically

examine remodularization in this environment, although there are distinctive issues associated

with service borders and deployment.

• Automated Testing Integration: Few works cover the question of how to use the available test

suites to test remodularizations or guarantee functional integrity.

• Continuous Remodularization: Little has been done to incorporate remodularization into

continuous development processes or set points of when remodularization should be induced.

• Economic Models: It lacks cost-benefit models to inform the investment decisions in

remodularization activities.

• Human Factors: A lack of focus on cognitive factors, preferences of developers, and organizational

dynamics.

3.6.2. Promising Future Directions

• AI-Powered Remodularization: Machine learning, especially deep learning, presents an

opportunity to learn on human scale using large codebases to discover useful modularization

patterns. Transfer learning has the potential to transfer knowledge between projects.

• Explainable Remodularization: To win the confidence of the developers and make decisions,

remodularization decisions should be given rationales that can be easily understood.

• Context-Aware Approaches: Implementing organizational context, team structure, and

development practices into remodularization algorithms.

• Incremental Remodularization: Low-risk remodularization techniques, which can be performed

in continuous form without interfering with development.

• Multi-Stakeholder Optimization: A tradeoff between technical quality and business issues,

organization of the team and operational needs.

• Remodularization for Cloud-Native: Resolving the special requirements of containerized,

serverless and cloud-native architectures.

• Empirical Long-Term Studies: Long-term studies of remodularization effects in real life conditions.

4. Discussion

4.1. Key Findings Summary

Our systematic review finds a mature, yet developing research topic that has a lot of scholarly interest but

little industrial involvement. Search-based and clustering techniques prevail, and there is growing interest

in hybrid techniques that integrate two or more data sources. Structural measures are essential to

evaluation, and little validation has been done on real-world enhancements in maintainability. Although

industrial validation is not very widespread, previous studies list a number of reasons. Our experience

indicates that practitioners can hesitate to do large-scale remodularization due to a weak estimation of

cost/benefit ratios, incomplete tool support, and the risk of build/test pipeline disruption in CI/CD

pipelines. The available prototypes are not integrated with the current DevOps processes or have no

empirical evidence that it saves on the maintenance. All these aspects justify the fact that the use of

remodularization techniques in the industry is progressing slowly.

4.2. Implications for Researchers

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

Awareness of the researchers should be focused on industrial collaboration to prove methods in practice.

The future studies have to take into consideration such practical issues as the usability of the tools, their

compatibility with the current processes, and financial feasibility. The opportunity of using modern AI

methods is great and at the same time, explainability and trustworthiness must be applied.

4.3. Implications for Practitioners

Practitioners must acknowledge the fact that tool maturity and practical advice is lacking despite a

plethora of techniques promising great results. Companies that remodularizing ought to:

• Start with small, low-risk pilot projects

• Ensure strong testing infrastructure before remodularization

• Involve developers in evaluating and refining proposals

• Take into account organizational and team variables, not only technical measures

Prepare sufficient migration energy and knowledge flow

4.4. Threats to Validity

All systematic mapping studies are prone to potential validity threats that can impact the accuracy or

applicability of its findings. This section will provide the summarization of the primary threats that were

found during our research and outline how the steps were made to reduce them. The threats are

separated into internal, external, and construct validity.

4.4.1 Internal Validity

Internal validity is related to biases and procedural issues that might affect data collection or analysis.

• Publication Bias: Studies that show positive or new discoveries have higher chances of being

published as compared to negative or null results and this can distort observed trends. To

minimize this threat, we have included studies that report neutral or inconclusive results and grey

literature that was recommended by domain experts.

• Selection Bias: Inconsistency may also be caused by subjectivity at the inclusion or exclusion stage

of the studies. This threat was reduced through the use of preset inclusion/exclusion criteria, and

by independent dual reviewing of two reviewers, the inter-rater agreement was high (Cohen’s κ

= 0.82). Third reviewer avoided disagreements by discussing.

• Data Extraction Bias: Obviously, it can be biased in Data Extraction It may be inaccurately

misinterpreted or omitted in data coding. To address this, the extraction forms were done in a

standardized manner, and 20 percent of the articles were cross-validated by a different reviewer

to gain consistency and the generalizability of the results.

4.4.2 External Validity

External validity addresses the representativeness of the sampled studies and generalizability of results.

• Search Coverage: Although searched five large online databases (IEEE Xplore, ACM DL, Springer

Link, ScienceDirect and Scopus) and engaged both forward-backward snowballing and expert

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

searching, there is a risk that it may have overlooked some relevant studies in other non-indexed

or local databases.

• Language Bias: English-language only publications were taken. Even though the decision is

consistent and can be reviewed, it can be missing potentially useful studies published in other

languages.

• Temporal Bias: Since the search was done until 2025 Sep, it is possible that very recent or in-press

studies were not found. This was however, compensated by citation tracking and database

notification towards the end of the review period.

4.4.3 Construct Validity

Construct validity refers to how accurately the study design captures the intended research questions and

concepts.

• Search String Adequacy: Search terms that are not complete or are not selected properly may

exclude valuable work. This threat was reduced by piloting search strings, refining them by

iteration with gold standard set of papers (93.3 recall) and review by expert opinion.

• Quality Assessment Validity: Quality scoring is subjective, and this fact may affect the inclusion

of the papers. We mitigated this by using a predefined five-point checklist and by independently

rating each study, followed by consensus discussions for borderline cases.

• Operationalization of Constructs: Certain constructs, such as “tool maturity” or “empirical

validation,” may vary across studies. To ensure consistency, we defined coding rules for each

variable and verified them with pilot samples before full data extraction.

5. Related Work

In literature, several secondary studies have already examined aspects of software remodularization and

its associated categories, such as clustering, restructuring, architecture recovery, etc. This section

provides summaries of several relevant works and potentially identifies limitations in these works.

The authors in [17] consider 54 primary sources and performed a systematic literature review in the

direction of software remodularization. The main limitation of their work is that they performed a very

shallow analysis aiming at identifying research publication platforms, the main technique dominating the

software remodularization field, and the dataset commonly used in literature to validate software

remodularization approaches. Similarly, the authors in [103] performed another limited systematic

literature review aiming at exploring search-based methods only in the field of software remodularization.

They concluded that machine learning classifiers can also be explored and assembled with existing search-

based methods to improve accuracy and quality. The authors in [104] conducted a systematic literature

survey on 3183 literature sources selected over 30 years related to the field of software refactoring,

aiming at identifying refactoring objectives, its lifecycle, different techniques, artifacts affected by

refactoring, and evaluation techniques. The authors in [2] performed a systematic literature review of 143

research articles to extensively investigate software module clustering. Their review is on module

clustering papers (up to 2020), however, they mainly focused on search-based methods. Bavota et al.

conducted a survey on code smell detection and refactoring, touching on architectural aspects but

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

focusing primarily on code-level concerns [18]. The authors in [3] surveyed software architecture recovery

techniques, overlapping with remodularization but emphasizing architecture reconstruction over

restructuring. Finally, the authors in [105] analyzed 126 primary sources to identify software

modernization challenges, driving forces, and employed strategies by different researchers. They

concluded that software modernization is triggered by 14 driving forces, and adaptive tooling support is

the main challenge.

Our review distinguishes itself through (i) comprehensive coverage of the remodularization lifecycle, (ii)

explicit focus on restructuring rather than recovery, (iii) evaluation and tools analysis, (iv) industrial and

practical emphasis, and (v) a contemporary timeframe capturing recent advances in AI and cloud-native

contexts. In short, previous surveys have provided rich groundwork in the clustering, search-based, and

refactoring methodologies but were not able to provide a to-date and all-encompassing mapping of

remodularization in methodological, empirical, and industrial aspects. That gap is sealed by this SMS,

which offers an evidence-based taxonomy, and establishes research trends, gaps, and directions of action

in the further decade of remodularization research.

6. Conclusion

Software remodularization represents a critical capability for managing the long-term health of software

systems. This systematic mapping study of 87 primary studies reveals a research area characterized by

diverse techniques, primarily based on search-based optimization and clustering, evaluated mainly

through structural metrics on open-source systems. Only 15 of 87 studies (17%) report industrial case

studies, and merely 23 (26%) provide open-source tool implementations.

While the field demonstrates substantial academic progress, significant gaps remain in industrial

validation, tool maturity, and practical adoption guidance. The emergence of AI-powered approaches,

explainable techniques, and cloud native architectures offers promising directions for future research.

Practitioners should note that most remodularization techniques lack mature tool support and have

limited real-world validation.

Bridging the gap between academic research and industrial practice requires greater emphasis on

practical concerns, rigorous empirical validation, and collaboration with practitioners. As software

systems continue growing in scale and complexity, effective remodularization techniques will become

increasingly essential for sustainable software evolution. We recommend that practitioners begin with

small pilot projects and ensure robust test suites before remodularizing a system.

References

[1] B. S. Mitchell, and S. Mancoridis, “On the automatic modularization of software systems using the
bunch tool,” IEEE Transactions on Software Engineering, vol. 32, no. 3, pp. 193-208, 2006.

[2] Q. I. Sarhan, B. S. Ahmed, M. Bures, and K. Z. Zamli, “Software module clustering: An in-depth
literature analysis,” IEEE Transactions on Software Engineering, vol. 48, no. 6, pp. 1905-1928,
2020.

[3] A. Qayum, M. Zhang, S. Colreavy, M. Chochlov, J. Buckley, D. Lin, and A. R. Sai, “A Framework and
Taxonomy for Characterizing the Applicability of Software Architecture Recovery Approaches: A
Tertiary‐Mapping Study,” Software: Practice and Experience, vol. 55, no. 1, pp. 100-132, 2025.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

[4] R. Mahouachi, “Search-based cost-effective software remodularization,” Journal of Computer
Science and Technology, vol. 33, no. 6, pp. 1320-1336, 2018.

[5] M. C. Monçores, A. C. Alvim, and M. O. Barros, “Large neighborhood search applied to the
software module clustering problem,” Computers & Operations Research, vol. 91, pp. 92-111,
2018.

[6] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and A. Ouni, “Many-
objective software remodularization using NSGA-III,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 3, pp. 1-45, 2015.

[7] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies
in software engineering: An update,” Information and software technology, vol. 64, pp. 1-18,
2015.

[8] S. Ducasse, and D. Pollet, “Software architecture reconstruction: A process-oriented taxonomy,”
IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 573-591, 2009.

[9] B. S. Mitchell, and S. Mancoridis, “On the evaluation of the bunch search-based software
modularization algorithm,” Soft Computing, vol. 12, no. 1, pp. 77-93, 2008.

[10] C. Schröder, A. van der Feltz, A. Panichella, and M. Aniche, "Search-based software re-
modularization: a case study at Adyen." pp. 81-90.

[11] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using formal concept analysis and
information retrieval,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 4, pp. 1-34, 2013.

[12] Y. Jia, S. Ge, H. Liang, N. Wang, Z. Wang, and J. Shu, “Incorporating use history in information
system remodularization,” IEEE Transactions on Engineering Management, vol. 71, pp. 1394-
1408, 2022.

[13] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia, “Improving software
modularization via automated analysis of latent topics and dependencies,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 23, no. 1, pp. 1-33, 2014.

[14] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook: Recommending
move method refactorings via relational topic models,” IEEE Transactions on Software
Engineering, vol. 40, no. 7, pp. 671-694, 2013.

[15] A. Bhowmick, M. Kosan, Z. Huang, A. Singh, and S. Medya, "DGCLUSTER: A neural framework for
attributed graph clustering via modularity maximization." pp. 11069-11077.

[16] Z. Ding, H. Li, W. Shang, and T.-H. P. Chen, “Can pre-trained code embeddings improve model
performance? Revisiting the use of code embeddings in software engineering tasks,” Empirical
Software Engineering, vol. 27, no. 3, pp. 63, 2022.

[17] N. Naveen, R. Singh, and A. Rathee, "Improving Software Modularity Using Software
Remodularization: Challenges and Opportunities." p. 01008.

[18] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion and coupling for software
remodularization: Is it enough?,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 25, no. 3, pp. 1-28, 2016.

[19] M. Harman, and X. Yao, “Software module clustering as a multi-objective search problem,” IEEE
Transactions on Software Engineering, vol. 37, no. 2, pp. 264-282, 2010.

[20] L. A. Kloda, J. T. Boruff, and A. S. Cavalcante, “A comparison of patient, intervention, comparison,
outcome (PICO) to a new, alternative clinical question framework for search skills, search results,
and self-efficacy: a randomized controlled trial,” Journal of the Medical Library Association: JMLA,
vol. 108, no. 2, pp. 185, 2020.

[21] A. Rathee, and J. K. Chhabra, “A multi-objective search based approach to identify reusable
software components,” Journal of Computer Languages, vol. 52, pp. 26-43, 2019.

[22] M. Harman, "The current state and future of search based software engineering." pp. 342-357.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

[23] K. Deb, and H. Jain, "Handling many-objective problems using an improved NSGA-II procedure."
pp. 1-8.

[24] K. Deb, and H. Jain, “An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part I: solving problems with box constraints,” IEEE
transactions on evolutionary computation, vol. 18, no. 4, pp. 577-601, 2013.

[25] A. Arcuri, and G. Fraser, “Parameter tuning or default values? An empirical investigation in search-
based software engineering,” Empirical Software Engineering, vol. 18, no. 3, pp. 594-623, 2013.

[26] P. McMinn, "Search-based software testing: Past, present and future." pp. 153-163.
[27] N. Siddique, and H. Adeli, “Simulated annealing, its variants and engineering applications,”

International Journal on Artificial Intelligence Tools, vol. 25, no. 06, pp. 1630001, 2016.
[28] Z. Xinchao, “Simulated annealing algorithm with adaptive neighborhood,” Applied Soft

Computing, vol. 11, no. 2, pp. 1827-1836, 2011.
[29] K. Sörensen, “Metaheuristics—the metaphor exposed,” International Transactions in Operational

Research, vol. 22, no. 1, pp. 3-18, 2015.
[30] P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi, “Variable neighborhood search: basics

and variants,” EURO Journal on Computational Optimization, vol. 5, no. 3, pp. 423-454, 2017.
[31] D. Pisinger, and S. Ropke, "Large neighborhood search," Handbook of metaheuristics, pp. 99-127:

Springer, 2018.
[32] C. Wang, Z. Liu, J. Qiu, and L. Zhang, “Adaptive constraint handling technique selection for

constrained multi-objective optimization,” Swarm and Evolutionary Computation, vol. 86, pp.
101488, 2024.

[33] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, "Evolutionary Algorithms for Solving Multi-
Objective Problems," Springer.

[34] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft computing,
vol. 22, no. 2, pp. 387-408, 2018.

[35] M. Dorigo, and T. Stützle, “Ant colony optimization: overview and recent advances,” Handbook of
metaheuristics, pp. 311-351, 2018.

[36] A. Prajapati, A. Parashar, and A. Rathee, “Multi-dimensional information-driven many-objective
software remodularization approach,” Frontiers of Computer Science, vol. 17, no. 3, pp. 173209,
2023.

[37] F. Murtagh, and P. Legendre, “Ward’s hierarchical agglomerative clustering method: which
algorithms implement Ward’s criterion?,” Journal of classification, vol. 31, no. 3, pp. 274-295,
2014.

[38] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, "Bunch: A clustering tool for the recovery
and maintenance of software system structures." pp. 50-59.

[39] F. Murtagh, and P. Contreras, “Algorithms for hierarchical clustering: an overview, II,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 6, pp. e1219, 2017.

[40] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract class refactoring opportunities using
structural and semantic cohesion measures,” Journal of Systems and Software, vol. 84, no. 3, pp.
397-414, 2011.

[41] L. Kaufman, and P. J. Rousseeuw, Finding groups in data: an introduction to cluster analysis: John
Wiley & Sons, 2009.

[42] S. Modak, "Finding groups in data: an introduction to cluster analysis: authored by Leonard
Kaufman and Peter J. Rousseeuw, John Wiley and Sons, 2005, ISBN: 0-47-1-73578-7," Taylor &
Francis, 2024.

[43] G. J. Oyewole, and G. A. Thopil, “Data clustering: application and trends,” Artificial intelligence
review, vol. 56, no. 7, pp. 6439-6475, 2023.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

[44] A. Rathee, and J. K. Chhabra, “Clustering for software remodularization by using structural,
conceptual and evolutionary features,” Journal of Universal Computer Science, vol. 24, no. 12, pp.
1731-1757, 2018.

[45] L. Gauvin, A. Panisson, and C. Cattuto, “Detecting the community structure and activity patterns
of temporal networks: a non-negative tensor factorization approach,” PloS one, vol. 9, no. 1, pp.
e86028, 2014.

[46] R. J. Campello, P. Kröger, J. Sander, and A. Zimek, “Density‐based clustering,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 10, no. 2, pp. e1343, 2020.

[47] A. Sharma, R. Gupta, and A. Tiwari, “Improved density based spatial clustering of applications of
noise clustering algorithm for knowledge discovery in spatial data,” Mathematical Problems in
Engineering, vol. 2016, no. 1, pp. 1564516, 2016.

[48] Y. Kim, K. Shim, M.-S. Kim, and J. S. Lee, “DBCURE-MR: An efficient density-based clustering
algorithm for large data using MapReduce,” Information Systems, vol. 42, pp. 15-35, 2014.

[49] S. K. C. Tulli, “Enhancing Software Architecture Recovery: A Fuzzy Clustering Approach,”
International Journal of Modern Computing, vol. 7, no. 1, pp. 141-153, 2024.

[50] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms: Springer Science &
Business Media, 2013.

[51] S. Fortunato, and C. Castellano, "Community structure in graphs," Computational complexity, pp.
490-512: Springer, 2012.

[52] V. Blondel, J.-L. Guillaume, and R. Lambiotte, “Fast unfolding of communities in large networks:
15 years later,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2024, no. 10, pp.
10R001, 2024.

[53] Y. Tian, and R. Lambiotte, “Structural balance and random walks on complex networks with
complex weights,” SIAM Journal on Mathematics of Data Science, vol. 6, no. 2, pp. 372-399, 2024.

[54] M. Newman, Networks: Oxford university press, 2018.
[55] U. Benlic, and J.-K. Hao, “A multilevel memetic approach for improving graph k-partitions,” IEEE

Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 624-642, 2011.
[56] V. Mokashi, and D. Kulkarni, "A review: Scalable parallel graph partitioning for complex networks."

pp. 1869-1871.
[57] M. Henzinger, A. Noe, C. Schulz, and D. Strash, “Practical minimum cut algorithms,” Journal of

Experimental Algorithmics (JEA), vol. 23, pp. 1-22, 2018.
[58] R. J. Preen, and J. Smith, “Evolutionary $ n $-Level Hypergraph Partitioning With Adaptive

Coarsening,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 6, pp. 962-971, 2019.
[59] A. Veremyev, O. A. Prokopyev, and E. L. Pasiliao, “Finding groups with maximum betweenness

centrality,” Optimization Methods and Software, vol. 32, no. 2, pp. 369-399, 2017.
[60] P. Bogdanov, B. Baumer, P. Basu, A. Bar-Noy, and A. K. Singh, "As strong as the weakest link:

Mining diverse cliques in weighted graphs." pp. 525-540.
[61] M. D'Ambros, M. Lanza, and R. Robbes, "An extensive comparison of bug prediction approaches."

pp. 31-41.
[62] R. f. Al-Msie’deen, and A. H Blasi, “Software evolution understanding: Automatic extraction of

software identifiers map for object-oriented software systems,” Journal of Communications
Software and Systems, vol. 17, no. 1, pp. 20-28, 2021.

[63] D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez, and J. Maudes-Raedo, “Emerging
topics in mining software repositories: Machine learning in software repositories and datasets,”
Progress in Artificial Intelligence, vol. 7, no. 3, pp. 237-247, 2018.

[64] D. I. Martin, and M. W. Berry, “Latent semantic indexing,” Encyclopedia of library and information
sciences, pp. 3195-3204, 2010.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

[65] A. Mahmoud, and G. Bradshaw, “Semantic topic models for source code analysis,” Empirical
Software Engineering, vol. 22, no. 4, pp. 1965-2000, 2017.

[66] A. Gupta, and R. Goyal, “Identifying high-level concept clones in software programs using
method’s descriptive documentation,” Symmetry, vol. 13, no. 3, pp. 447, 2021.

[67] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, "The impact of code review coverage and code
review participation on software quality: A case study of the qt, vtk, and itk projects." pp. 192-
201.

[68] U. Chauhan, and A. Shah, “Topic modeling using latent Dirichlet allocation: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 7, pp. 1-35, 2021.

[69] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure for large-scale collection and
analysis of open-source code,” Science of Computer Programming, vol. 79, pp. 241-259, 2014.

[70] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, "Combining machine learning and
information retrieval techniques for software clustering." pp. 42-60.

[71] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Labeling source code with
information retrieval methods: an empirical study,” Empirical Software Engineering, vol. 19, no.
5, pp. 1383-1420, 2014.

[72] M. Zhang, C. Tao, H. Guo, and Z. Huang, "Recovering semantic traceability between requirements
and source code using feature representation techniques." pp. 873-882.

[73] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in
vector space,” arXiv preprint arXiv:1301.3781, 2013.

[74] Q. Le, and T. Mikolov, "Distributed representations of sentences and documents." pp. 1188-1196.
[75] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global vectors for word representation." pp.

1532-1543.
[76] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, "Deep learning code fragments for code

clone detection." pp. 87-98.
[77] P. K. Singh, C. Aswani Kumar, and A. Gani, “A comprehensive survey on formal concept analysis,

its research trends and applications,” International Journal of Applied Mathematics and Computer
Science, vol. 26, no. 2, pp. 495-516, 2016.

[78] Z. J. Lu, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Journal of
the Royal Statistical Society Series A, vol. 173, no. 3, pp. 693-694, 2010.

[79] A. Cutler, D. R. Cutler, and J. R. Stevens, "Random forests," Ensemble machine learning, pp. 157-
175: Springer, 2012.

[80] K.-G. Grujić, S. Prokić, A. Kovačević, N. Luburić, D. Vidaković, and J. Slivka, “Machine learning
approaches for code smell detection: a systematic literature review,” Available at SSRN 4299859,
2022.

[81] M. Hall, N. Walkinshaw, and P. McMinn, "Supervised software modularisation." pp. 472-481.
[82] T. Kipf, “Semi-supervised classification with graph convolutional networks,” arXiv preprint

arXiv:1609.02907, 2016.
[83] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

Advances in neural information processing systems, vol. 30, 2017.
[84] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, "Summarizing source code using a neural

attention model." pp. 2073-2083.
[85] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural

networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4-24,
2020.

[86] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk, "Deep learning
similarities from different representations of source code." pp. 542-553.

[87] Z.-H. Zhou, Ensemble methods: foundations and algorithms: CRC press, 2025.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

[88] S. P. R. Puchala, J. K. Chhabra, and A. Rathee, “Ensemble clustering based approach for software
architecture recovery,” International Journal of Information Technology, vol. 14, no. 4, pp. 2013-
2019, 2022.

[89] M. Robredo, M. Esposito, F. Palomba, R. Peñaloza, and V. Lenarduzzi, “In Search of Metrics to
Guide Developer-Based Refactoring Recommendations,” arXiv preprint arXiv:2407.18169, 2024.

[90] B. Livshits, and T. Zimmermann, “Dynamine: Finding usage patterns and their violations by mining
software repositories,” Mining Software Specifications: Methodologies and Applications, pp. 201-
240, 2011.

[91] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “A Retrospective on Mining Version
Histories to Guide Software Changes,” IEEE Transactions on Software Engineering, 2025.

[92] M. Bibi, O. Maqbool, and J. Kanwal, “Supervised learning for orphan adoption problem in software
architecture recovery,” Malaysian Journal of Computer Science, vol. 29, no. 4, pp. 287-313, 2016.

[93] S. Counsell, M. Arzoky, G. Destefanis, and D. Taibi, "On the relationship between coupling and
refactoring: an empirical viewpoint." pp. 1-6.

[94] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “Recent advancements in code
clone detection–techniques and tools,” IEEE Access, vol. 7, pp. 86121-86144, 2019.

[95] K. P. Srinivasan, and T. Devi, “A complete and comprehensive metrics suite for object-oriented
design quality assessment,” International Journal of Software Engineering and Its Applications,
vol. 8, no. 2, pp. 173-188, 2014.

[96] F. N. Colakoglu, A. Yazici, and A. Mishra, “Software product quality metrics: A systematic mapping
study,” IEEE access, vol. 9, pp. 44647-44670, 2021.

[97] T. P. Hopkins, “Complexity metrics for quality assessment of object-oriented design,” WIT
Transactions on Information and Communication Technologies, vol. 9, 2025.

[98] F. Meng, Y. Wang, C. Y. Chong, H. Yu, and Z. Zhu, “Evolution-aware constraint derivation approach
for software remodularization,” ACM Transactions on Software Engineering and Methodology,
vol. 33, no. 8, pp. 1-43, 2024.

[99] B. Pourasghar, H. Izadkhah, A. Isazadeh, and S. Lotfi, “A graph-based clustering algorithm for
software systems modularization,” Information and Software Technology, vol. 133, pp. 106469,
2021.

[100] S. Wong, Y. Cai, M. Kim, and M. Dalton, "Detecting software modularity violations." pp. 411-420.
[101] M. R. Keyvanpour, Z. K. Zandian, and F. Morsali, “Software re-modularization method based on

many-objective function,” International Journal of Information and Communication Technology
Research, vol. 16, no. 1, pp. 28-41, 2024.

[102] V. Tzerpos, “Comprehension-driven software clustering,” 2001.
[103] D. Sharma, and G. Sharma, “Systematic Literature review of search-based software engineering

techniques for code modularization/remodularization,” Computational Intelligence Applications
for Software Engineering Problems, pp. 241-266, 2023.

[104] C. Abid, V. Alizadeh, M. Kessentini, T. d. N. Ferreira, and D. Dig, “30 years of software refactoring
research: A systematic literature review,” arXiv preprint arXiv:2007.02194, 2020.

[105] W. K. Assunção, L. Marchezan, L. Arkoh, A. Egyed, and R. Ramler, “Contemporary software
modernization: Strategies, driving forces, and research opportunities,” ACM Transactions on
Software Engineering and Methodology, vol. 34, no. 5, pp. 1-35, 2025.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

Appendix-A

1. A. Rathee and J. K. Chhabra, “Clustering for Software Remodularization by Using

Structural, Conceptual and Evolutionary,” J. Universal Computer Sci., vol. 24, no. 12, pp.

1731–1757, Jan. 2018.

2. R. Mahouachi, “Search-Based Cost-Effective Software Remodularization,” J. Comput.

Sci. Technol., vol. 33, no. 6, pp. 1320–1336, 2018.

3. M. C. Monçores, A. C. Alvim, and M. O. Barros, “Large Neighborhood Search Applied to

the Software Module Clustering Problem,” Comput. Oper. Res., vol. 91, pp. 92–111, 2018.

4. W. Mkaouer et al., “Many-Objective Software Remodularization Using NSGA-III,” ACM

Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp. 1–45, 2015.

5. Schröder et al., “Search-Based Software Re-Modularization: A Case Study at Adyen,” in

Proc. Conf., 2023, pp. 81–90.

6. Y. Jia et al., “Incorporating Use History in Information System Remodularization,” IEEE

Trans. Eng. Manage., vol. 71, pp. 1394–1408, 2022.

7. G. Bavota et al., “Improving Software Modularization via Automated Analysis of Latent

Topics and Dependencies,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 1–33,

2014.

8. Candela et al., “Using Cohesion and Coupling for Software Remodularization: Is It

Enough?,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–28, 2016.

9. M. Harman and X. Yao, “Software Module Clustering as a Multi-Objective Search

Problem,” IEEE Trans. Softw. Eng., vol. 37, no. 2, pp. 264–282, 2011.

10. L. Mu et al., “A Hybrid Genetic Algorithm for Software Architecture Re-Modularization,”

Inf. Syst. Front., vol. 21, no. 4, pp. 28–55, 2019.

11. Prajapati and J. Chhabra, “Information-Theoretic Remodularization of Object-Oriented

Software Systems,” Inf. Syst. Front., vol. 22, pp. 15–28, 2020.

12. Tan et al., “REARRANGE: Effort Estimation for Software Clustering-Based

Remodularization,” arXiv:2303.06283, 2023.

13. Mueller et al., “Automated Software Remodularization Based on Move Refactoring: A

Complex Systems Approach,” in Proc. ICSSSM, 2014, doi:10.1145/2577080.2577097.

14. R. Prajapati and S. Kumar, “PSO-MoSR: A PSO-Based Multi-Objective Software

Remodularization,” Int. J. Bio-Inspired Comput., vol. 7, pp. 179–194, 2020.

15. Z. Marian et al., “A Hierarchical Clustering-Based Approach for Software Restructuring

at the Package Level,” in Proc. SYMBIOS, 2017, pp. 1–17.

16. R. Prajapati and K. Deb, “SOMR: Self-Organizing Map for Software Remodularization,”

in Proc. CISIM, 2019, pp. 112–121.

17. G. Serban and I. G. Czibula, “An Efficient Scheme for Solutions of Search-Based Multi-

Objective Software Remodularization,” in Proc. IFIP WG 2.3, 2016, pp. 381–398.

18. P. Cordeiro et al., “Automatic Re-Modularization of Software Systems Using Extended

Ant Colony Optimization,” Inf. Softw. Technol., vol. 119, pp. 26–47, 2019.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

19. Parashar and J. Chhabra, “Package-Restructuring Based on Software Change History,”

Nat. Acad. Sci. Lett., vol. 40, no. 8, pp. 507–514, 2017.

20. G. Varghese et al., “Adaptive Elephant Herding Optimization for Software

Remodularization,” Expert Syst. Appl., vol. 150, p. 113266, 2020.

21. Prajapati and J. Chhabra, “Optimizing Software Modularity with Minimum Possible

Variation,” J. Intell. Syst., vol. 27, no. 4, pp. 1–12, 2018.

22. M. Hall, N. Walkinshaw, and P. McMinn, “Effectively Incorporating Expert Knowledge

in Automated Software Remodularization,” IEEE Trans. Softw. Eng., vol. 44, no. 7, pp.

613–627, 2018.

23. Z. Pourasghar et al., “A Graph-Based Clustering Algorithm for Software Systems

Modularization,” Inf. Softw. Technol., vol. 135, p. 106469, 2021.

24. Zhong et al., “PairSmell: Inspecting Software Module Structure via Pairwise Smell

Detection,” Symmetry, vol. 17, no. 11, 2024.

25. R. Prajapati and A. Rathee, “Entropy-Based Module Clustering for Software

Reconfiguration,” J. Softw. Evol. Process, vol. 32, no. 7, e2277, 2020.

26. M. Aghdasifam et al., “A Metaheuristic-Based Hierarchical Clustering Algorithm for

Software Modularization,” Complexity, 2020.

27. de Oliveira, M. C., et al. (2019). Finding needles in a haystack: Leveraging co-change to

recommend move method and move field refactorings, Journal of Systems and Software,

156, 109–128, 2019.

28. K. Zamli and A. Kader, “Chaotic Map Initialization with Tiki-Taka Algorithm for Software

Remodularization,” in Proc. ICACT, 2022.

29. Jagle et al., “Topic-Aware Software Module Clustering Using LDA,” in Proc. SANER,

2017, pp. 1–11.

30. Mahmoud and G. Bradshaw, “Semantic Topic Models for Source Code Analysis,” Empir.

Softw. Eng., vol. 22, no. 4, pp. 1965–2000, 2017.

31. S. P. R. Puchala et al., “Ensemble Clustering Approach for Software Architecture

Recovery,” Int. J. Inform. Technol., vol. 14, no. 4, pp. 2013–2019, 2022.

32. T. Wareham, “On the Computational Complexity of Software Re-modularization,” in Proc.

CSMR-WCRE, 2016, pp. 1–12.

33. Mueller et al., “Moving Methods: An Approach to Automated Move Method

Refactorings,” Empir. Softw. Eng., vol. 20, no. 5, pp. 1411–1467, 2015.

34. Y. Kang et al., “Feature-Oriented Search-Based Software Re-modularization,” J. Softw.

Maint. Evol. Resil. Syst., vol. 29, no. 6, e2072, 2017.

35. S. Bright and G. Varghese, “REARRANGE: Effort Estimation for Software

Remodularization,” in Proc. ASE, 2023.

36. L. D’Ambros et al., “An Extensive Comparison of Bug Prediction Approaches,” in Proc.

ICSE, 2010, pp. 31–41.

37. J. Harman and Y. Jia, “Search-Based Software Engineering and Re-modularization: A

Survey,” Inf. Softw. Technol., vol. 80, pp. 17–35, 2016.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

38. G. Bavota et al., “Combining Machine Learning and IR for Software Clustering,” in Proc.

SANER, 2012, pp. 42–60.

39. F. Taher, M. Souraki, and M. A. Ghani, “A New Fuzzy Clustering Method for Software

Remodularization,” Expert Syst. Appl., vol. 122, pp. 68–86, 2019.

40. Corazza et al., “Code Cloning and Modularization: A Systematic Review,” J. Syst. Softw.,

vol. 159, p. 110445, 2020.

41. Kabir et al., “Dynamic Architecture Recovery for Microservices,” in Proc. CSMR, 2021,

pp. 220–230.

42. N. Naveen and R. Singh, “Improving Modularity with Software Re-modularization

Techniques,” ITM Web Conf., vol. 54, 2023.

43. H. Wang et al., “Multi-Objective Clustering for Software Modularization,” Inf. Softw.

Technol., vol. 132, pp. 106482, 2021.

44. P. Miranskyy and M. P. Jones, “Hierarchical Decomposition for Software

Reconfiguration,” in Proc. ICPC, 2022, pp. 90–100.

45. S. Khoo et al., “Software Modularization via Graph Partitioning,” J. Comput. Sci., vol. 29,

pp. 1–17, 2018.

46. G. Pant_ñ et al., “Clustering-Driven Refactoring for Improved Maintainability,” in Proc.

MSR, 2019.

47. Sharma and R. S. Chhillar, “Search-Based Software Re-modularization Using Ant Colony

Optimization,” Egyptian Informatics J., vol. 17, no. 2, pp. 91–103, 2016.

48. M. Kamiya et al., “A DepFinder Approach to Dependency Extraction for Software

Remodularization,” in Proc. WCRE, 2011, pp. 81–90.

49. Raimond, K., & Lovesum, J. (2019). A novel approach for automatic remodularization of

software systems using extended ant colony optimization algorithm. Information and

software technology, 114, 107-120.

50. H. Agrawal et al., “Clustering of Software Artifacts via Sparse Matrix Factorization,” IEEE

Trans. Serv. Comput., 2023.

51. S. Vadi et al., “Topic-Based Re-modularization of Microservices,” Inf. Softw. Technol.,

vol. 152, 2022, doi: 10.1016/j.infsof.2022.106916.

52. Gupta and R. Goyal, “Identifying High-Level Concept Clones in Software Programs,”

Symmetry, vol. 13, no. 3, p. 447, 2021.

53. M. Tufano et al., “Deep Learning Code Fragments for Code Clone Detection,” in Proc.

ICSE, 2016, pp. 87–98.

54. J. White et al., “CloneRadar: An Interactive Web-Tool for Multi-Method Software

Clustering,” PLoS One, vol. 20, no. 5, 2025.

55. Q. U. Ain et al., “Keyword-Driven Clustering for Software Modularization,” IEEE Access,

vol. 7, pp. 86121–86144, 2019.

56. R. Bijon et al., “Scalable Remodularization for Large Codebases,” in Proc. SANER, 2024.

57. Livshits and T. Zimmermann, “Dynamine: Finding Usage Patterns and Their Violations

by Mining Repositories,” in Mining Software Specifications, 2011, pp. 201–240.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

58. M. Robredo et al., “Metrics to Guide Developer-Based Refactoring Recommendations,”

arXiv:2407.18169, 2024.

59. R. T. Whitmore and P. A. Laplante, “Re-Modularization Using Social Network Analysis

of Code Changes,” J. Netw. Comput. Appl., vol. 90, pp. 195–208, 2017.

60. Gholizadeh et al., “Dynamic Clustering for Evolving Software Architectures,” in Proc.

FSE, 2020.

61. T. Vu et al., “Automatic Software Module Clustering Using GNNs,” in Proc. ESEC/FSE,

2021, pp. 345–356.

62. T. Menzies and A. Agrawal, “Clustering Software Repositories with Topic Models and

Coverage Metrics,” Empir. Softw. Eng., vol. 28, no. 2, 2023.

63. J. Wang and H. Lou, “Cluster-Based Architecture Recovery with Machine Learning,” in

Proc. WCRE, 2022.

64. Kuznetsov and A. Romanovsky, “Software Microservice Re-modularization via Domain

Decomposition,” J. Syst. Archit., vol. 111, 2020.

65. H. Chang et al., “Cross-Platform Software Re-modularization Techniques,” J. Softw. Evol.

Process, vol. 35, no. 6, 2023.

66. Li and K. Zhao, “Refactoring-Aware Clustering for Legacy Systems,” Inf. Softw. Technol.,

vol. 147, 2022, doi: 10.1016/j.infsof.2022.106908.

67. X. Qiao et al., “Integrating Static and Dynamic Analysis for Software Re-Modularization,”

in Proc. ICSE, 2019, pp. 100–110.

68. P. McMinn et al., “Search-Based Testing for Re-modularized Software,” in Proc. GECCO,

2018.

69. M. Klecha and G. Han, “A Framework for Evaluating Software Remodularization

Results,” Softw. Qual. J., vol. 28, no. 1, 2020.

70. O. Nejati and G. C. Murphy, “Learning to Re-modularize: A Supervised Approach,” in

Proc. ASE, 2017.

71. Barros et al., “Multi-View Clustering for Software Systems,” J. Softw. Evol. Process, vol.

33, no. 4, 2021.

72. T. Xie and N. Tillmann, “Probabilistic Module Assignment for Re-modularization,” in

Proc. PLDI, 2020.

73. J. Zhang and Z. Wu, “Community Detection in Software Dependency Graphs for Re-

modularization,” IEEE Trans. Netw. Sci. Eng., vol. 6, no. 3, 2019.

74. H. Liang et al., “Co-evolution-Based Software Re-modularization,” Inf. Softw. Technol.,

vol. 124, 2020, doi: 10.1016/j.infsof.2020.106295.

75. Bhowmick et al., “Graph Embedding Techniques for Software Module Clustering,” in

Proc. SDM, 2021.

76. R. Fauzi et al., “Search-Based Software Remodularization with Knowledge-Based Fitness

Functions,” in Proc. CSMR, 2019.

77. Y. Le and K. He, “Deep Learning for Software Architecture Re-modularization,” in Proc.

ICWS, 2023.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR

78. P. P. Kumar and S. Chandra, “Evolutionary Clustering for Large-Scale Software Systems,”

in Proc. GECCO, 2022.

79. R. Wei et al., “Coupling-Driven Re-modularization Using Constraint Programming,” Artif.

Intell. Rev., vol. 55, 2021.

80. H. Smith and P. Johnson, “Module Boundary Prediction for Automated Re-

modularization,” in Proc. SANER, 2023.

81. L. Bruno et al., “Search-Based Refactoring for Modularization Improvement,” in Proc.

ASE, 2022.

82. Kerr and M. Wood, “Incremental Re-modularization for Agile Development,” in Proc.

Agile, 2019.

83. Rai et al., “Applying LDA for Semantic Remodularization of Software Systems,” in Proc.

MSR, 2020.

84. Serebrenik et al., “Architecture Recovery for microservices using Topic Models,” in Proc.

ICSME, 2021.

85. M. Zhang and D. Spinellis, “Large System Re-remodularization via Community

Detection,” in Proc. SANER, 2018.

86. J. Carver et al., “Clustering-Based Re-modularization: An Industrial Case Study,” in Proc.

ICSME, 2017.

87. Prajapati, A., Parashar, A., & Rathee, A. (2023). Multi-dimensional information-driven

many-objective software remodularization approach. Frontiers of Computer

Science, 17(3), 173209.

