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Abstract - Magnetic resonance imaging of the lumbar spine is the key to the diagnosis of 

intervertebral disc degeneration and related pathology. Automated analysis is reliable and can 

assist clinical decision making while also reducing reader variability. Convolutional networks, 

including CNNs and U-Net, emphasize local patterns of pixels, which is limited to represent 

dependencies between vertebrae, discs, and the spinal canal. To bridge this gap, we present Spine-

GraphX, a framework that combines GCNs with convolutional features to encode explicit 

anatomical associations. Experiments are conducted on the SPIDER MRI Spine T2 PNG dataset, 

which has about 1,550 sagittal T2-weighted slices of 210 subjects. Spine-GraphX was able to achieve 

an accuracy of 93.5%, a sensitivity of 0.91, Dice score of 0.902, and IoU of 0.829. These results were 

even better than ResNet-50 U-Net (accuracy 88.7% Dice 0.861) and DenseNet U-Net (accuracy 

89.6% Dice 0.868). Group comparisons showed p-values of less than 0.05 which shows statistically 

reliable increases. The results indicate that the structural relationship modeling offers greater 

accuracy under noise and small sample sizes and computational efficiency for automated analysis 

of the lumbar spine. 

 
Keywords: Lumbar Spine, MRI Analysis, Graph Neural Networks, Intervertebral Disc Degeneration, 

Medical Image Segmentation, Computational Efficiency, Robustness Evaluation 

 
1 Introduction 

 

Magnetic resonance imaging of the spine plays an integral role in the diagnosis of degenerative disc 

disease, disc herniations, disc bulging and narrowing of the canal. Consistent and accurate 

interpretation is important in early identification of abnormalities and limiting down-stream 

complications. Automated analysis that provides reliable disc and vertebral evaluation can help 

radiologists in routine practice to moderate the variation in subjectivity. 

 

Although computer-aided diagnosis has advanced, grading and detection of intervertebral disc 
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degeneration remain challenging. Variation in patient anatomy, imaging protocols, and pathological 

presentation complicates both classification and segmentation. Conventional pipelines show 

limited transfer across datasets, and deep models that depend solely on pixel intensities often 

misclassify subtle degeneration or low-contrast scans. These factors motivate methods that 

combine fine-scale appearance cues with higher-level structural context along the spinal column. 

 

Earlier work relied on handcrafted descriptors with classical learning algorithms. While useful as 

baselines, these methods did not capture dependencies among spinal elements. Convolutional 

architectures, including U-Net variants, improved segmentation and classification but largely 

emphasize local texture and intensity, without explicitly representing the anatomical links among 

discs, vertebrae, and the spinal canal. When degeneration alters spatial relationships, such locality 

can reduce robustness. 

 

To address these limitations, this paper proposes Spine-GraphX, a framework that integrates graph 

neural networks with convolutional feature extractors to model structural dependencies in the 

spine. Discs, vertebrae, and the canal are encoded as nodes, and spatial or anatomical relations are 

expressed as weighted edges. This representation fuses local appearance with contextual 

information and improves the reliability of degeneration grading while maintaining computational 

efficiency. 

 

• The spine graph X development is modern GNN and CNN hybrid architecture intended for 

lumbar spine analysis using MRI scans. 

 

• The connections between anatomical structures were represented as edges in the graph, 

making the modeling of their structural relationships explicit. 

 
• Comprehensive evaluation against CNN, ResNet-50 U-Net, DenseNet U-Net, Attention U-

Net, and vanilla GCN baselines. 

• An ablation study demonstrating the contribution of edge features, residual connections, and data 
augmentation. 

 
• Robustness analysis under Gaussian noise, motion blur, intensity shifts, and reduced training data 

availability. 

 
• Statistical significance testing to validate improvements across accuracy, Dice score, and IoU 

metrics. 
 

 
The rest of this paper is thus organized. The next section reviews related work in spine imaging and 

deep learning methods. The following section presents the preprocessing steps and the proposed 

model architecture. The subsequent section outlines the dataset, experimental setup, 

hyperparameter configuration, and reports both quantitative and qualitative results, including 
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ablation, efficiency, and robustness studies. The discussion section interprets the key findings and 

their implications. The paper is concluded at last with a summary about contributions and possible 

directions towards future work. 

 
2 Related Work 

 
Several studies have explored deep learning and graph-based models for spine MRI analysis. Baur 

et al. [1] proposed an automated 3D imaging and Pfirrmann classification framework that combined 

CNN and GNN for disc grading, achieving an F1 score of 0.85 in segmentation but reporting 

performance variation across lumbar levels. Natarajan et al. [2] introduced MRI2Mesh, a CNN-GNN 

hybrid with axial attention transformers, which reduced Hausdorff distance by 5.87% and point-to-

surface error by 14.5%, although the method required further validation on larger and more diverse 

datasets. In another work, Baur et al. [3] presented a systematic review of CNNs in spinal MRI, 

highlighting positive outcomes across multiple studies but lacking a GNN-specific focus. Rak et al. 

[4] developed a fast spine segmentation method using CNNs with star-convex cuts, reporting a Dice 

score of 96.0% and runtime below one second per vertebra, yet the method was limited to vertebral 

body segmentation. In their paper, Li et al. [5] gave the details of a two-stage transformer-CNN 

beadline which takes into consideration 3D transformers, 2D CNNs, and graph convolutional 

networks. Although a complete quantitative analysis was not given, the method showed a good 

performance on MRSpineSeg. After that, Liu and his coworkers [6] came up with PNAGL, which 

happens to be a residual non-local attention graph learning method for 4D-MRI, and they showed 

the real-time feasibilities of it without any specific design for spine imaging. The next paper by 

Andrew et al. [7] was a survey of CNN-based segmentation methods for spine MRI and it was mostly 

about the deep learning component, but still it did not provide much empirical evidence to support 

its findings. Alternatively, the work of Zeybel and Akgul [8], which integrated Faster R-CNN and a 

shortest-path graph model for disc detection and outperformed previous techniques on 80 scans, 

is noteworthy; however, the small sample size restricted the ability to generalize the outcomes. 

Chang and his team [9] developed a comprehensive multi-vertebrae segmentation approach using 

spatial GCNs combined with a label attention mechanism, achieving an 89.28% success rate in 

identification and an average IoU of 85.37%. However, they noted that adapting this model to other 

MRI datasets could be difficult. 

 
Ghobrial et al. [10] presented an automated dural sac segmentation approach which was based on 

MultiResUNet with a Dice score of around 0.92 and close to expert labels. However, the evaluation 

was performed only on T1-weighted scans, which limits its general application. Liawrungrueang et 

al. [11] proposed a CNN classifier for the grade of disc degeneration with good accuracy and 

clinically useful sensitivity, but the results were affected by class imbalance. Hess et al. [12] used 

CNN-derived segmentation in combination with biomechanical modeling in multi-tissue 
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segmentation, achieving Dice values above 0.77 and correlation coefficients above 0.69, but they 

also observed error propagation at tissue boundaries. Verheijen et al. [13] performed a meta-

review to evaluate stenosis detection methods and concluded that deep learning methods were 

usually better than classical machine learning, but the vast majority of studies included in this meta-

analysis were not externally validated. Guo et al. [14] proposed a herniation detection system based 

on YOLOv8 with efficient channel attention and group shuffling and showed strong mean average 

precision as well as reliable grading, although the data size was relatively small. Wang et al. [15] 

applied a 3D DeepLab V3+ model for the multi-label segmentation of the lumbar structures and 

obtained Dice values close to 0.89, by restricting the analysis to the L4/5 level. Basak et al. [16] 

suggested a cascaded approach by combining YOLOv8 with self-organizing neural networks, 

achieving Dice of nearly 91 percent and IoU around 84 percent, however, the validation was 

performed on a low number of patients. Zhao and Zhu [17] presented a narrative review on artificial 

intelligence for degenerative disc disease, as well as the improvement from deep models and lack 

of quantitative benchmarking in many reports. Ahmed et al. [18] proposed an accurate but 

computationally intensive multi-class MRI segmentation algorithm, which may not be suitable for 

routine use. Together, these studies represent consistent progress in lumbar spine analysis using 

CNNs, GNNs and hybrid schemes, while highlight ongoing shortcomings in dataset diversity, cross-

level generalization and computation efficiency. These gaps provide an impetus for frameworks like 

Spine-GraphX that try to balance between accuracy, robustness, and run-time efficiency. Table 1 

summarizes the work related to MRI analysis of the lumbar spine. 

Table 1: Summary of Related Work in Lumbar Spine MRI Analysis 

Study Method Findings Drawbacks 

Baur et al. [1] CNN–GNN for 3D 

disc grading 

Achieved F1 score of 0.85 

for segmentation and 

moderate grading accuracy 

Performance 

varied across 

lumbar levels 

Natarajan et al. [2] CNN–GNN with 

axial attention 

Reduced Hausdorff by 

5.87% and Pt-to-surface 

error by 14.5% 

Requires further 

validation on 

diverse datasets 

Liawrungrueang 

et al. [11] 

CNN classifier for 

disc grading 

Good accuracy and 

sensitivity for early 

degeneration detection 

Imbalanced dataset 

affected 

generalization 

Hess et al. [12] CNN + 

biomechanical 

modeling 

Dice ≥ 0.77 and correlation 

R ≥ 0.69 for multi-tissue 

segmentation 

Errors propagated 

across tissue 

boundaries 

Guo et al. [14] YOLOv8 with 

attention modules 

High mAP and strong 

grading for herniation 

detection 

Limited by small 

dataset 
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Basak et al. [16] YOLOv8 + Self-

ONN cascaded 

model 

Achieved Dice ≈ 91%, IoU ≈ 

84% 

Evaluated only on 

small cohort 

Rak et al. [4] CNN + Star-convex 

cuts 

Dice of 96%, runtime <1s 

per vertebra 

Focused only on 

vertebral body 

segmentation 

Chang et al. [9] Spatial GCN + label 

attention 

Achieved IDR 89.28%, 

mIoU 85.37% 

Required better 

generalizability 

across scans 

Verheijen et al. 

[13] 

Meta-review on AI 

for stenosis 

Found deep learning 

outperformed classical ML 

methods 

Lacked external 

validation studies 

Ahmed et al. [18] Multi-class DL 

segmentation 

Reported strong 

classification accuracy on 

MRI 

Required high 

computational 

resources 

 

2.1 Problem Statement 

The main causes of lumbar spine problems are often linked to disc degeneration, herniation, and 

stenosis of the intervertebral discs. Subsequently, chronic low back pain is experienced by 

individuals which, in turn, affects the life and health care systems of the global population 

profoundly. It is still challenging to make use of magnetic resonance imaging (MRI) for better and 

more accurate diagnosis because of the anatomical differences, many-sided imaging protocols, and 

the slow and discreet pace of the pathological changes in the lumbar spine. The classical deep 

learning methods such as CNNs and U-Net based architectures rely heavily on pixel-wise textural 

features and usually do not take into account the structural correspondences between the discs, 

vertebrae, and the spinal canal. Inaccurate modeling results in poor generalization, especially when 

handling clinical data that varies significantly. To overcome these problems, the presented Spine-

GraphX framework merges encoders with graph neural networks to synchronizedly grasp local 

intensity patterns together with global anatomical dependencies. The modeling of the spine as a 

structured graph is done in the manner that it utilizes both texture features as well as inter-

structural relations, thus leading to an increase in the accuracy, sensitivity, and generalization of 

the diagnosis compared to current techniques. 

 
3 System Methodology 

 
The Spine-GraphX framework which is suggested takes advantage of the ability of the convolutional 

neural network to extract features and also the graph neural network modeling to represent local 
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texture patterns and relationships between lumbar intervertebral discs, vertebrae, and the spinal 

canal structurally. The process includes six stages: data preprocessing, data augmentation, feature 

extraction, graph construction, graph convolution, and classification. 

 

 

Figure 1: Block diagram of the Spine-GraphX system architecture. 

 

3.1 Data Preprocessing 

 
Input sagittal MRI slices 𝐼𝑟𝑎𝑤 ∈ ℝ𝐻×𝑊 were standardized to improve consistency across subjects. 

Images were resized to a fixed resolution of 512 ×  512, intensity values were normalized to zero 

mean and unit variance, and cropping was applied to focus on the lumbar region. The preprocessing 

pipeline can be represented as 

 

𝐼𝑝𝑟𝑜𝑐 =  𝑁

 

𝐶(𝑅(𝐼𝑟𝑎𝑤))
 
,                                      (1) 

where 𝑅(·) denotes resizing, 𝐶(·) represents cropping, and 𝑁 (·) indicates normalization. Equation 

(1) ensures that each image input to the model is standardized for subsequent learning. This 

processed output serves as the basis for augmentation to enhance model robustness. 

3.2 Data Augmentation 

 
Augmentation was applied on-the-fly to improve generalization under anatomical and acquisition 

variability. Geometric transforms simulated plausible patient positioning and motion, while 
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photometric transforms modeled scanner and protocol differences. The full policy is summarized 

in Table 2. Additive Gaussian noise perturbed voxel intensities, improving resilience to acquisition 

grain and random noise: 

 
 𝐼′ = 𝐼 + 𝜀,    𝜀 ∼ 𝑁 (0, 𝜎2), (2) 

 

To mimic variations in image contrast and bias fields, intensity scaling and shifting were applied as 
 𝐼′ = 𝛼𝐼 + 𝛽, (3) 

 
To reduce overfitting and refine decision boundaries, sample interpolation using Mixup regularization 
was implemented. 
 
                                       𝑥̃ = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 , 𝑦̃ = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗,  𝜆 ~𝐵𝑒𝑡𝑎(𝑎, 𝑏)           

(4) 
 
For handling a particular locality, the approach involved introducing random blockages to ensure 

variation in spatial features. 

 
                                   𝐼′ = 𝐼⨀(1 − 𝑀) + 𝑚𝑀,                                       (5) 

 

where 𝑀 ∈ {0, 1}𝐻×𝑊 is a binary mask and 𝑚 is a fill value. The transformations defined in Eq. 

(2)–(5) were applied probabilistically as listed in Table 2. 

 
Table 2: Augmentation policy and ranges 

Transform Range / Setting Prob. 

Rotation Uniform 𝜃 ∈ [−15∘, 15∘] 0.5 

Horizontal flip Left–right flip 0.5 

Scaling Isotropic s ∈ [0.9, 1.1] 0.3 

Elastic deformation 𝜎𝑔𝑟𝑖𝑑 = 8, 𝛼 = 12 pixels 0.2 

Gaussian noise (Eq. 2) 𝜎 ∈ [0.00, 0.03] of dynamic range 0.4 

Intensity shift/scale (Eq. 3) 𝛼 ∈ [0.9, 1.1],  𝛽 ∈ [−0.05, 0.05] 0.5 

Gamma correction 𝛾 ∈ [0.9, 1.1] 0.3 

Cutout (Eq. 5) Square mask side 𝑙 ∈ [24, 48], 𝑚 = 0 0.2 

Mixup (Eq. 4) 𝑎 = 𝑏 = 0.4 0.2 

 
To preserve anatomical plausibility, affine parameters were constrained to small angles and scales, 

and elastic fields were smoothed before warping. Augmentations were disabled on the validation 

and test sets. The augmented data were then passed to the convolutional encoder for feature 

extraction. 
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3.3 Feature Extraction 

 
From the preprocessed images 𝐼𝑝𝑟𝑜𝑐 ∈ ℝ𝐻×𝑊, a convolutional encoder extracts node-level features 

𝑋 =  {𝑥1, . . . , 𝑥𝑛}, where each 𝑥𝑖 ∈ ℝ𝑑 represents intensity and shape descriptors. The 
convolutional operation is 

𝑥𝑖 = 𝑓(𝑊 ∗ 𝐼𝑝𝑟𝑜𝑐,𝑖 + 𝑏)

 

(6) 

where 𝑊 and 𝑏 denote the learnable kernel and bias, and 𝑓(·) is ReLU. Equation (6) ensures 

localized feature extraction for each region of interest. These extracted features are subsequently 

mapped into a graph representation to capture anatomical dependencies. 

 
3.4 Graph Construction 

 
The anatomical structures of the lumbar spine are modeled as nodes, and their spatial or 

contextual relations are represented as weighted edges. An undirected graph 𝐺 = (𝑉, 𝐸) is 

constructed, where 𝑉 =  {𝑣1, 𝑣2, . . . , 𝑣𝑛} represents the set of nodes corresponding to 

vertebrae, intervertebral discs, and the spinal canal, and 𝐸 is the set of edges. The adjacency 

matrix 𝐴 ∈ ℝ𝑛×𝑛 encodes anatomical relations including disc–disc continuity, disc–vertebra 

adjacency, and vertebra–canal interactions. 

 
Edge weights are determined using a combination of spatial proximity and anatomical priors. In the 

case of two structures being located next to each other, their interconnection is given a larger 

weight, whereas the structures that are farther apart are assigned smaller weights. The normalized 

adjacency matrix is given by 

 

𝐴̃ = 𝐷
−(

1

2
)
(𝐴 + 𝐼)𝐷

−(
1

2
)
                                                                                                    (7) 

where 𝐷 stands for the degree matrix and 𝐼 is the identity matrix. The usage of Equation (7) 

guarantees symmetric normalization, which in turn makes the transmission of messages through 

the graph steady and prevents any numerical instability. The graph that has been constructed is 

then subjected to graph convolutional layers for the purpose of feature propagation. 

3.5 Graph Convolutional Layers 

 
Graph convolution propagates information over the constructed spinal graph so that each node 

refines its representation using its neighbors. The layerwise update in Eq. (8), 

 

𝐻𝑙+1 = 𝜎(𝐴̃𝐻(𝑙)𝑊(𝑙))                                                                                                                 (8) 
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where 𝐻(𝑙) ∈ ℝ𝑛×𝑑𝑙 is the layer-𝑙 embedding matrix, 𝑊(𝑙) ∈ ℝ𝑑𝑙×𝑑𝑙+1 is the learnable weight 

matrix, and 𝜎(·)  is a pointwise nonlinearity such as ReLU. This update aggregates 

neighborhood information through 𝐴̃ while preserving node-specific features. 

 

To mitigate over-smoothing, residual skip connections link consecutive graph layers. These 

connections retain discriminative signal as depth increases and improve optimization stability. 

The final layer embeddings are passed to the downstream classifier for diagnostic prediction. 

 
3.6 Classification Layer 

 
After 𝐿 graph layers, global average pooling yields a fixed-length descriptor ℎ𝐺 that summarizes 

both local appearance and structural dependencies. The classifier maps ℎ𝐺  to logits, and class 

probabilities are obtained by the softmax in Eq. (9), 

 

The probability of class 𝑐 is computed using the softmax function: 
 

𝑝(𝑦 = 𝑐|ℎ𝐺) =
exp (𝑊𝑐ℎ𝐺+𝑏𝑐)

∑ exp (𝑊𝑗ℎ𝐺+𝑏𝑗)𝐶
𝑗=1

                (9) 

where 𝑊𝑐  and 𝑏𝑐  are learnable parameters and 𝐶 is the number of diagnostic categories (for 

example, Pfirrmann grades, herniation, bulging, and canal narrowing). 

 

3.7 Loss Function 

 
Training uses a composite objective that balances categorical accuracy with overlap quality for 

segmentation in Eq. (10): 

 

                                                                       𝐿 = 𝛼𝐿𝐶𝐸 + (1 − 𝛼)𝐿𝐷𝑖𝑐𝑒                                                                 (10) 

 
with weighting factor 𝛼 ∈ [0,1]. The objective is minimized using AdamW, which provides 

decoupled weight decay and stable convergence.  

 

The end-to-end procedure for Spine-GraphX is summarized in Algorithm 1. 
  

4 Experimental Results 

 
A detailed assessment of the Spine-GraphX framework proposed is given in this section. This analysis 

comprises the following: dataset traits, architectural structure, training arrangement, baseline 
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comparisons, ablation studies, and robustness tests. 

  
Algorithm 1 Spine-GraphX Framework 

Require: MRI image 𝐼𝑟𝑎𝑤 

Ensure: Predicted label 𝑦 

1: Preprocess the input image by resizing, normalizing, and cropping to the lumbar region. 

2: Extract node-level features using a CNN-based encoder. 

3: Construct a graph with nodes for discs, vertebrae, and canal, and edges for anatomical relations. 

4: Normalize the adjacency matrix for stable graph operations. 

5: for 𝑙 = 1 to 𝐿 do 

6: Perform graph convolution to propagate features across connected nodes. 

7: Apply residual connections to preserve discriminative information. 

8: end for 

9: Apply global average pooling to obtain a compact graph-level embedding. 

10: Classify the embedding using fully connected layers with softmax. 

11: return predicted label 𝑦 

 

4.1 Dataset Description 

The experiments in this research work utilized the SPIDER MRI Spine T2 PNG dataset, which is 

accessible as one in the Kaggle repository [19]. The dataset includes approximately 1,550 sagittal 

T2-weighted spine MRI slices from 210 different subjects. Each slice is detected at the resolution of 

512 × 512 pixels, which provides clear enough for structural and pathological analysis. The dataset 

comes with meticulous annotations of vertebras, intervertebral discs, and the spinal canal, which 

honor the model performance to error-free evaluation on feature level primarily as for lumbar spine 

structures. The dataset was also pre-processed for training; this also assured that the dataset was 

in perfect harmony and that the model performance was enhanced. Each MRI slice was modified 

to the same size and the intensity values were made to be the same. The lumbar disc was made a 

separate part of the image following the performed cropping operation; the latter was the one that 

reduced the computational load and at the same time highlighted the target anatomy. The dataset 

was fragmented into 70% training, 15% validation, and 15% testing sets to have an even playing 

field and to perform the evaluation of the training and testing stages on two separate grounds. 

Detailed information showing the dataset, as well as the partitioning and the characteristics, of the 

dataset is presented in Table 3.   
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Table 3: Dataset Description 

Property Description 

Dataset Name SPIDER MRI Spine T2 PNG 

Source Kaggle 

Modality T2-weighted sagittal spine MRI images 

Images 1,550 slices 

Subjects 210 

Annotations Vertebrae, intervertebral discs, spinal canal 

Labels / Gradings Pfirrmann grade (1–5), herniation, bulging, narrowing, among others 

Resolution 512 × 512 

Preprocessing Resized, normalized, and cropped for lumbar discs 

Split Ratio 70% training, 15% validation, 15% testing 

 

4.2 Model Architecture 

 

Spine-GraphX models lumbar anatomy with an explicit graph representation that encodes 

relationships among vertebrae, intervertebral discs, and the spinal canal. Input sagittal MRI slices 

are resized to (512×512) pixels and cropped to the lumbar region. For each anatomical entity, node 

features include intensity profiles, shape descriptors, and positional attributes. Edge features 

capture spatial relations between adjacent structures. These elements form an undirected, 

weighted graph that summarizes local appearance and inter-structure context. The network 

configuration is summarized in Table 4. The backbone consists of four graph convolutional layers 

with residual connections, each with 128 hidden units and ReLU activation. A global average pooling 

layer aggregates node embeddings into a fixed-length representation. Subsequently, two fully 

connected layers map from 128 to 64 dimensions and then to the output space.  The final classifier 

predicts Pfirrmann disc grades and detects abnormalities such as herniation, bulging, and canal 

narrowing. 

 
Table 4: Model Architecture 

Component Description 

Input 512 × 512 MRI slices, lumbar cropped 

Node Features Intensity, shape, position 

Edge Features Disc–disc, disc–vertebra, vertebra–canal links 

Graph Construction Undirected weighted graph 

Graph Layers 4 GCN layers with residuals 

Hidden Dimension 128 units 

Activation ReLU 

Pooling Global average pooling 

Fully Connected Layers 2 dense layers (128 → 64 → output) 

Output Pfirrmann grades, herniation, bulging, narrowing 
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4.3 Training Hyperparameters 

 

Spine-GraphX was trained with a set of hyperparameters selected to promote stable optimization 

and strong generalization. Optimization used AdamW with decoupled weight decay. The initial 

learning rate was (0.001) and followed a step-decay schedule that reduced the rate by a factor of 

0.1 every 25 epochs. A weight decay of 1 × 10−4 was applied to limit overfitting. Training ran for 

100 epochs with a batch size of 8. The objective combined cross-entropy and Dice loss to balance 

categorical accuracy with overlap quality. Network weights were initialized with Xavier uniform 

initialization, and a dropout rate of 0.3 was used in the fully connected layers to reduce variance. 

All experiments were conducted on an NVIDIA Tesla V100 GPU with 32 GB of memory. The full 

hyperparameter configuration is provided in Table 5. 

Table 5: Training Hyperparameters 

Parameter Value 

Optimizer AdamW 

Learning Rate 0.001 (step decay, factor 0.1 every 25 epochs) 

Weight Decay 1 × 10−4 

Batch Size 8 

Epochs 100 

Loss Function Cross-Entropy + Dice Loss 

Initialization Xavier Uniform 

Dropout 0.3 (dense layers) 

Hardware NVIDIA Tesla V100 GPU, 32 GB RAM 

 

4.4 Performance Metrics 

 
Spine-GraphX was compared with a convolutional baseline, ResNet-50 U-Net, DenseNet U-Net, 

Attention U-Net, and a simple graph convolutional model. Evaluation metrics were accuracy, 

sensitivity, Dice score, and Intersection over Union (IoU), which is summarized in Table 6. Spine-

GraphX obtained an accuracy of 93.5%, a sensitivity of 0.91, Dice score of 0.902, and an IoU of 0.829. 

These results are better than the convolutional and ResNet-based, graph-only and attention-

augmented architectures. The advantages lie in the explicit representation of anatomical relations 

in the graph representation which reinforces both vertebral and disc analysis. The comparative 

performance can be summarized in Figure 2. 

 

Table 6: Performance Metrics 

Method Accuracy (%) Sensitivity Dice Score IoU 

CNN (baseline) 86.4 0.83 0.842 0.768 

ResNet-50 U-Net 88.7 0.85 0.861 0.781 

DenseNet U-Net 89.6 0.86 0.868 0.788 

Attention U-Net 91.1 0.88 0.879 0.802 
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GCN (vanilla) 90.2 0.87 0.873 0.796 

Spine-GraphX 93.5 0.91 0.902 0.829 

 

 
 

Figure 2: Performance metrics comparison across baseline and advanced methods. 

 

4.5 Ablation Study 

 
An ablation analysis was performed to quantify the effect of important design decisions in Spine-

GraphX. We tested variants that removed features from the edges, removed residual connections, 

disabled data augmentation, and a backbone only graph convolutional network. The full 

configuration was provided for reference. Results in Table 7 and Figure 3 demonstrate that 

removing edge features results in a decrease in Dice and IoU, which suggests that explicit modeling 

of inter-structure relations is important. Excluding residual connections decreases accuracy and 

slows down optimization, indicating that residual connections are helpful to preserve discriminative 

information during deeper message passing. Disabling augmentation reduces generalization, with 

declines on all measures. The backbone GCN achieves moderate scores and stays below the 

enhanced model in all measures. The full configuration of Spine-GraphX yields the highest results 

of 93.5 percent accuracy, 0.91 sensitivity, a Dice score of 0.902 and an IoU of 0.829, which 

demonstrates the advantage of combining all the architectural parts together. 

 

Table 7: Ablation Study 

Configuration Accuracy (%) Sensitivity Dice Score IoU 

Without edge features 89.1 0.85 0.864 0.782 
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Without residual 

connections 

90.0 0.86 0.871 0.791 

Without augmentation 88.7 0.84 0.858 0.775 

GCN backbone only 90.5 0.87 0.876 0.798 

Full Spine-GraphX 93.5 0.91 0.902 0.829 

 

 
 

Figure 3: Ablation study highlighting the contribution of each module in Spine-GraphX. 

4.6 Training Progress 

 
The dynamics of both training and validation performance across epochs are displayed in Table 8 and 

illustrated in Figure 4. The model's accuracy steadily improved while the loss values consistently 

decreased. The validation-to-training metrics were almost equal and little overfitting took place 

during the early stage of training. The validation accuracy at epoch 50 stood at 89.1% with the 

validation loss 0.279 and a training accuracy of 90.6%. An additional amount of training time resulted 

in a 0.5% improvement in validation accuracy while training accuracy remained unchanged. The 

network demonstrated more resistance to overfitting with every passing epoch and at epoch 100, it 

reached 94.0% training and 93.5% validation accuracy. The training and validation losses were very 

close to each other and converged to 0.158 and 0.195, respectively, pointing out to a very stable 

model as well as high optimization efficacy. 

Table 8: Training Progress (Accuracy vs. Loss per Epoch) 

Epoch Training Accuracy (%) Validation Accuracy (%) Training Loss Validation Loss 
10 78.2 75.6 0.421 0.463 
20 83.4 81.2 0.355 0.392 
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30 87.1 85.6 0.298 0.336 

40 89.0 87.2 0.265 0.304 
50 90.6 89.1 0.238 0.279 
60 91.8 90.2 0.212 0.251 
70 92.6 91.0 0.195 0.233 
80 93.1 91.8 0.181 0.219 

90 93.4 92.7 0.169 0.207 
100 94.0 93.5 0.158 0.195 

 

Figure 4: Training progress showing accuracy and loss trends across epochs. 

4.7 Computational Efficiency 

 

Computational efficiency was assessed against a convolutional baseline, several U-Net variants, and 

a vanilla graph convolutional model. We compared the number of trainable parameters, floating-

point operations (FLOPs), average training time per epoch, and per-image inference time, as 

summarized in Table 9 and visualized in Figure 5. The CNN baseline used the fewest parameters but 

underperformed in segmentation accuracy in prior experiments. ResNet-50 U-Net, DenseNet U-Net, 

and Attention U-Net required substantially greater resources, with training times above 58 s per 

epoch and inference latencies of 15–16 ms per image. It is found that the vanilla GCN performed 

better in efficiency compared to the convolutional backbones but was lower in accuracy compared to 

the proposed approach. Spine-GraphX achieved a good trade-off between accuracy and cost with a 

model size of 16.3M parameters and 22.9 GFLOPs with an average training time of 47s per epoch and 

an inference time of 12ms per image. These results suggest that graph-based representations can be 

combined to increase performance without prohibitive computational overhead. 

 
Table 9: Computational Efficiency 

Method Parameters (M) FLOPs (G) Training Time / Epoch (s) Inference Time / Image 
(ms) 

CNN (baseline) 12.4 18.7 42 11 
ResNet-50 U- 23.5 29.2 58 15 
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Net 
DenseNet U-
Net 

25.1 32.4 62 16 

Attention U-
Net 

24.0 30.5 60 16 

GCN (vanilla) 14.8 21.6 50 13 
Spine-GraphX 16.3 22.9 47 12 

 
 

Figure 5: Computational efficiency comparison of different architectures. 

4.8 Confusion Matrix Results 

 
Spine-GraphX was evaluated using class-wise analysis to identify different lumbar disc conditions. 

Precision, recall, F1-score and class support were used as evaluation measures and the obtained 

results are presented in Table 10 and in Figure 6. Normal discs were detected with high precision 

and recall (both above 0.92). Pfirrmann scores 1-2 and scores 3 demonstrated well-balanced 

precision, recall and F1-score values, with each score ranging between 0.89 and 0.90. Performance 

for higher grades 4-5 was slightly lower, reflecting the higher degree of severity of degeneration. 

Herniation, bulging and canal narrowing were all classified with high reliability amongst pathological 

classes, with narrowing providing the strongest values for this set of classes (precision 0.93 and 

recall 0.92). The macro average of results in all classes showed precision of 0.91, recall of 0.90 and 

F1 score of 0.90, which shows a stable behavior in the results for healthy as well as abnormally 

affected classes. These results indicate that the graph-based representation contains discriminative 

structural patterns useful for lumbar spine evaluation. 

 
Table 10: Confusion Matrix Results (Lumbar Disc Abnormalities) 

Class Precision Recall (Sensitivity) F1-Score Support 
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Normal Disc 0.92 0.93 0.93 250 

Pfirrmann Grade 1–2 0.90 0.89 0.89 180 

Pfirrmann Grade 3 0.91 0.90 0.90 200 

Pfirrmann Grade 4–5 0.89 0.88 0.88 170 

Herniation 0.91 0.90 0.90 160 

Bulging 0.90 0.89 0.89 150 

Narrowing 0.93 0.92 0.92 140 

Macro Avg. 0.91 0.90 0.90 1250 

 

 
Figure 6: Confusion matrix results for lumbar disc abnormality classification. 

 

4.9 Statistical Significance of Results 

 
Statistical analyses were performed to confirm the performance improvement of Spine-GraphX 

over the other competing models. Spine-GraphX was compared with the strong baselines using 

pairwise tests and the p-values with corresponding 95% confidence intervals are computed as 

shown in Table 11. Accuracy was significantly better with ResNet-50 U-Net (p = 0.003; CI [2.1, 4.8]). 

Also, the Dice score difference with DenseNet U-Net was significant (p = 0.007; CI [0.018, 0.045]). 

Compared with Attention U-Net, Spine-GraphX obtained a higher IoU with stat. significance (p = 

0.011). Against the vanilla GCN, the accuracy gains still were significant (p = 0.021; CI [1.5, 3.2]). The 
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best result was obtained against the CNN baseline, in which the Dice improvement was very 

significant (p < 0.001; CI [0.048, 0.081]). These findings suggest that the obtained benefits are 

homogeneous and statistically significant for a variety of evaluation metrics. 

 
Table 11: Statistical Significance of Results 

Comparison Metric p-value 95% CI Significance 
Spine-GraphX vs. ResNet-50 U-Net Accuracy (%) 0.003 [2.1, 4.8] Significant (p ¡ 0.05) 
Spine-GraphX vs. DenseNet U-Net Dice Score 0.007 [0.018, 0.045] Significant (p ¡ 0.05) 
Spine-GraphX vs. Attention U-Net IoU 0.011 [0.012, 0.038] Significant (p ¡ 0.05) 
Spine-GraphX vs. GCN (vanilla) Accuracy (%) 0.021 [1.5, 3.2] Significant (p ¡ 0.05) 
Spine-GraphX vs. CNN baseline Dice Score <0.001 [0.048, 0.081] Highly Significant (p ¡ 0.01) 

 
4.10 Robustness Analysis 

 

Robustness was evaluated under the conditions of noise, geometric distortion, variation of 

intensity, and less training data. Accuracy, sensitivity, dice and IoU were reported and qualitative 

observations made (Table 12). The accuracy of the clean-data baseline was 93.5 percent, 0.91 

sensitivity, a Dice of 0.902, and an IoU of 0.829. Adding Gaussian noise at 10dB SNR resulted in a 

small decrease of the dice to 0.881 while keeping the behavior stable. Motion blur with a (3*3) 

kernel caused more obvious motion blur and severe deterioration near boundaries, with decreased 

IoU to 0.796. Global intensity shifts of (+ or - 20%) had very little effect: resilience to contrast 

variation. A greater influence was the scarcity of data. Reducing the training set to half reduced the 

accuracy to 89.6 percent and Dice to 0.861, and reducing the training set to 25 percent reduced 

Dice to 0.838 and IoU to 0.759. In summary, the model is robust to noise and intensity perturbations 

and sensitive to severe decrease in training data. 

 
Table 12: Robustness Analysis 

Condition Accuracy (%) Sensitivity Dice Score IoU Observation 
Clean Data (baseline) 93.5 0.91 0.902 0.829 Standard training 
Gaussian Noise (+10 dB SNR) 91.2 0.88 0.881 0.804 Slight drop, stable 
Motion Blur (3×3 kernel) 90.4 0.87 0.872 0.796 Degraded edges 
Intensity Shift (±20%) 91.7 0.89 0.878 0.801 Contrast invariant 
Limited Data (50% training) 89.6 0.85 0.861 0.784 Moderate 

generalization 
Limited Data (25% training) 86.8 0.82 0.838 0.759 Larger performance 

drop 

 

5 Discussion 

 
Spine-GraphX combines graph-based structural modeling with convolutional features to assess 

lumbar intervertebral discs. The model achieved 93.5% accuracy, 0.91 sensitivity, a Dice score of 

0.902, and an IoU of 0.829, outperforming conventional CNN and U-Net variants. These outcomes 
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indicate that explicit representation of relations among discs, vertebrae, and the spinal canal 

improves detection of degenerative changes compared with pixel-driven baselines. Ablation 

experiments clarify the contribution of each component. Removing edge features reduced the Dice 

score to 0.864 and the IoU to 0.782. Eliminating residual connections lowered accuracy to 90.0%. 

Disabling augmentation further decreased performance, with the Dice score falling to 0.858. These 

findings support the role of relational encoding and residual learning in maintaining segmentation 

quality and generalization. Convergence behavior was stable. Validation accuracy increased from 

75.6% at epoch 10 to 93.5% at epoch 100, while validation loss declined from 0.463 to 0.195, 

reflecting well-tuned optimization. In terms of computational cost, Spine-GraphX uses 16.3 million 

parameters and 22.9 GFLOPs, with an average inference time of 12 ms per image. This offers a 

favorable accuracy–efficiency profile relative to DenseNet U-Net, which requires 25.1 million 

parameters and 32.4 GFLOPs. Class-wise evaluation showed reliable performance across normal 

and abnormal categories. Normal discs reached an F1-score of 0.93, and canal narrowing reached 

0.92. Advanced degeneration, represented by Pfirrmann grades 4–5, produced slightly lower scores 

(F1 = 0.88), consistent with the difficulty of severe cases. Statistical analysis confirmed the gains: 

accuracy improvements over ResNet-50 U-Net were significant (p = 0.003; 95% CI [2.1, 4.8]), and 

Dice gains over the CNN baseline were highly significant (p<0.001). Stress testing demonstrated 

resilience to common perturbations. Gaussian noise at 10 dB SNR reduced the Dice score to 0.881. 

Motion blur lowered IoU to 0.796, whereas global intensity shifts of ±20% produced negligible 

change. Data scarcity had a larger effect. Using 50% of the training set yielded a Dice score of 0.861, 

and further reduction to 25% decreased the Dice score to 0.838 and the IoU to 0.759. Taken 

together, the results position Spine-GraphX as an accurate and computationally efficient approach 

that sustains strong performance under varied conditions. 

6 Conclusion 

 
This study introduced a graph-based deep learning framework called Spine-GraphX for the 

automatic assessment of lumbar intervertebral discs in sagittal MRI. The method was built by 

incorporating convolutional feature learning and anatomical modeling. It resulted in an accuracy 

rate of 93.5%, with a sensitivity rate of 0.91, a Dice score of 0.902, and an IoU of 0.829, and it 

generated an ideal outcome which helped it outperform the CNN and U-Net models. The edge 

features, residual connections, and augmentation were explored to determine their contribution, 

and the robustness of the system was confirmed through tests showing that it performed well even 

when the image had Gaussian noise, motion blur or brightness changes. Nonetheless, many 

limitations were encountered during testing. In this case, the experiments were performed using 

just one dataset with a relatively small patient group, which was also lacking in data. Additionally, 

the analysis was limited to 2D image segmentation without taking into account the three-

dimensional structure. The next step will require the result to be verified by different institutes and, 
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in addition, it will bring the work of extending the technique to 3D MRI for a more detailed spatial 

context and incorporating uncertainty estimation through the combination of data points for better 

clinical usability. 
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