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Abstract - Magnetic resonance imaging of the lumbar spine is the key to the diagnosis of
intervertebral disc degeneration and related pathology. Automated analysis is reliable and can
assist clinical decision making while also reducing reader variability. Convolutional networks,
including CNNs and U-Net, emphasize local patterns of pixels, which is limited to represent
dependencies between vertebrae, discs, and the spinal canal. To bridge this gap, we present Spine-
GraphX, a framework that combines GCNs with convolutional features to encode explicit
anatomical associations. Experiments are conducted on the SPIDER MRI Spine T2 PNG dataset,
which has about 1,550 sagittal T2-weighted slices of 210 subjects. Spine-GraphX was able to achieve
an accuracy of 93.5%, a sensitivity of 0.91, Dice score of 0.902, and loU of 0.829. These results were
even better than ResNet-50 U-Net (accuracy 88.7% Dice 0.861) and DenseNet U-Net (accuracy
89.6% Dice 0.868). Group comparisons showed p-values of less than 0.05 which shows statistically
reliable increases. The results indicate that the structural relationship modeling offers greater
accuracy under noise and small sample sizes and computational efficiency for automated analysis

of the lumbar spine.

Keywords: Lumbar Spine, MRI Analysis, Graph Neural Networks, Intervertebral Disc Degeneration,
Medical Image Segmentation, Computational Efficiency, Robustness Evaluation

1 Introduction

Magnetic resonance imaging of the spine plays an integral role in the diagnosis of degenerative disc
disease, disc herniations, disc bulging and narrowing of the canal. Consistent and accurate
interpretation is important in early identification of abnormalities and limiting down-stream
complications. Automated analysis that provides reliable disc and vertebral evaluation can help
radiologists in routine practice to moderate the variation in subjectivity.

Although computer-aided diagnosis has advanced, grading and detection of intervertebral disc
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degeneration remain challenging. Variation in patient anatomy, imaging protocols, and pathological
presentation complicates both classification and segmentation. Conventional pipelines show
limited transfer across datasets, and deep models that depend solely on pixel intensities often
misclassify subtle degeneration or low-contrast scans. These factors motivate methods that
combine fine-scale appearance cues with higher-level structural context along the spinal column.

Earlier work relied on handcrafted descriptors with classical learning algorithms. While useful as
baselines, these methods did not capture dependencies among spinal elements. Convolutional
architectures, including U-Net variants, improved segmentation and classification but largely
emphasize local texture and intensity, without explicitly representing the anatomical links among
discs, vertebrae, and the spinal canal. When degeneration alters spatial relationships, such locality
can reduce robustness.

To address these limitations, this paper proposes Spine-GraphX, a framework that integrates graph
neural networks with convolutional feature extractors to model structural dependencies in the
spine. Discs, vertebrae, and the canal are encoded as nodes, and spatial or anatomical relations are
expressed as weighted edges. This representation fuses local appearance with contextual
information and improves the reliability of degeneration grading while maintaining computational
efficiency.

+ The spine graph X development is modern GNN and CNN hybrid architecture intended for
lumbar spine analysis using MRI scans.

» The connections between anatomical structures were represented as edges in the graph,
making the modeling of their structural relationships explicit.

« Comprehensive evaluation against CNN, ResNet-50 U-Net, DenseNet U-Net, Attention U-

Net, and vanilla GCN baselines.

 An ablation study demonstrating the contribution of edge features, residual connections, and data
augmentation.

» Robustness analysis under Gaussian noise, motion blur, intensity shifts, and reduced training data
availability.

« Statistical significance testing to validate improvements across accuracy, Dice score, and loU
metrics.

The rest of this paper is thus organized. The next section reviews related work in spine imaging and
deep learning methods. The following section presents the preprocessing steps and the proposed
model architecture. The subsequent section outlines the dataset, experimental setup,

hyperparameter configuration, and reports both quantitative and qualitative results, including
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ablation, efficiency, and robustness studies. The discussion section interprets the key findings and
their implications. The paper is concluded at last with a summary about contributions and possible

directions towards future work.

2 Related Work

Several studies have explored deep learning and graph-based models for spine MRI analysis. Baur
et al. [1] proposed an automated 3D imaging and Pfirrmann classification framework that combined
CNN and GNN for disc grading, achieving an F1 score of 0.85 in segmentation but reporting
performance variation across lumbar levels. Natarajan et al. [2] introduced MRI2Mesh, a CNN-GNN
hybrid with axial attention transformers, which reduced Hausdorff distance by 5.87% and point-to-
surface error by 14.5%, although the method required further validation on larger and more diverse
datasets. In another work, Baur et al. [3] presented a systematic review of CNNs in spinal MRI,
highlighting positive outcomes across multiple studies but lacking a GNN-specific focus. Rak et al.
[4] developed a fast spine segmentation method using CNNs with star-convex cuts, reporting a Dice
score of 96.0% and runtime below one second per vertebra, yet the method was limited to vertebral
body segmentation. In their paper, Li et al. [5] gave the details of a two-stage transformer-CNN
beadline which takes into consideration 3D transformers, 2D CNNs, and graph convolutional
networks. Although a complete quantitative analysis was not given, the method showed a good
performance on MRSpineSeg. After that, Liu and his coworkers [6] came up with PNAGL, which
happens to be a residual non-local attention graph learning method for 4D-MRI, and they showed
the real-time feasibilities of it without any specific design for spine imaging. The next paper by
Andrew et al. [7] was a survey of CNN-based segmentation methods for spine MRI and it was mostly
about the deep learning component, but still it did not provide much empirical evidence to support
its findings. Alternatively, the work of Zeybel and Akgul [8], which integrated Faster R-CNN and a
shortest-path graph model for disc detection and outperformed previous techniques on 80 scans,
is noteworthy; however, the small sample size restricted the ability to generalize the outcomes.
Chang and his team [9] developed a comprehensive multi-vertebrae segmentation approach using
spatial GCNs combined with a label attention mechanism, achieving an 89.28% success rate in
identification and an average loU of 85.37%. However, they noted that adapting this model to other
MRI datasets could be difficult.

Ghobrial et al. [10] presented an automated dural sac segmentation approach which was based on
MultiResUNet with a Dice score of around 0.92 and close to expert labels. However, the evaluation
was performed only on T1-weighted scans, which limits its general application. Liawrungrueang et
al. [11] proposed a CNN classifier for the grade of disc degeneration with good accuracy and
clinically useful sensitivity, but the results were affected by class imbalance. Hess et al. [12] used

CNN-derived segmentation in combination with biomechanical modeling in multi-tissue
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segmentation, achieving Dice values above 0.77 and correlation coefficients above 0.69, but they
also observed error propagation at tissue boundaries. Verheijen et al. [13] performed a meta-
review to evaluate stenosis detection methods and concluded that deep learning methods were
usually better than classical machine learning, but the vast majority of studies included in this meta-
analysis were not externally validated. Guo et al. [14] proposed a herniation detection system based
on YOLOv8 with efficient channel attention and group shuffling and showed strong mean average
precision as well as reliable grading, although the data size was relatively small. Wang et al. [15]
applied a 3D Deeplab V3+ model for the multi-label segmentation of the lumbar structures and
obtained Dice values close to 0.89, by restricting the analysis to the L4/5 level. Basak et al. [16]
suggested a cascaded approach by combining YOLOv8 with self-organizing neural networks,
achieving Dice of nearly 91 percent and loU around 84 percent, however, the validation was
performed on a low number of patients. Zhao and Zhu [17] presented a narrative review on artificial
intelligence for degenerative disc disease, as well as the improvement from deep models and lack
of quantitative benchmarking in many reports. Ahmed et al. [18] proposed an accurate but
computationally intensive multi-class MRI segmentation algorithm, which may not be suitable for
routine use. Together, these studies represent consistent progress in lumbar spine analysis using
CNNs, GNNs and hybrid schemes, while highlight ongoing shortcomings in dataset diversity, cross-
level generalization and computation efficiency. These gaps provide an impetus for frameworks like
Spine-GraphX that try to balance between accuracy, robustness, and run-time efficiency. Table 1

summarizes the work related to MRI analysis of the lumbar spine.

Table 1: Summary of Related Work in Lumbar Spine MRI Analysis

error by 14.5%

Study Method Findings Drawbacks
Baur et al. [1] CNN-GNN for 3D Achieved F1 score of 0.85 | Performance
disc grading for segmentation and | varied across
moderate grading accuracy | lumbar levels
Natarajanetal.[2] | CNN-GNN with Reduced Hausdorff by | Requires  further
axial attention 5.87% and Pt-to-surface | validation on

diverse datasets

Liawrungrueang

CNN classifier for

Good accuracy and

Imbalanced dataset

et al. [11] disc grading sensitivity for early | affected
degeneration detection generalization
Hess et al. [12] CNN + Dice 2 0.77 and correlation | Errors propagated
biomechanical R > 0.69 for multi-tissue | across tissue
modeling segmentation boundaries
Guo et al. [14] YOLOvS8 with High mAP and strong | Limited by small
attention modules | grading for herniation | dataset
detection
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Basak et al. [16]

YOLOvVS + Self-
ONN cascaded
model

Achieved Dice = 91%, loU =
84%

Evaluated only on
small cohort

Rak et al. [4]

CNN + Star-convex
cuts

Dice of 96%, runtime <1s
per vertebra

Focused only on

vertebral body

segmentation

Chang et al. [9] Spatial GCN + label | Achieved IDR 89.28%, | Required better
attention mloU 85.37% generalizability
across scans
Verheijen et al. | Meta-review on Al | Found deep learning | Lacked external

[13] for stenosis outperformed classical ML | validation studies
methods
Ahmed et al. [18] | Multi-class DL Reported strong | Required high

segmentation classification accuracy on | computational

MRI

resources

2.1 Problem Statement

The main causes of lumbar spine problems are often linked to disc degeneration, herniation, and
stenosis of the intervertebral discs. Subsequently, chronic low back pain is experienced by
individuals which, in turn, affects the life and health care systems of the global population
profoundly. It is still challenging to make use of magnetic resonance imaging (MRI) for better and
more accurate diagnosis because of the anatomical differences, many-sided imaging protocols, and
the slow and discreet pace of the pathological changes in the lumbar spine. The classical deep
learning methods such as CNNs and U-Net based architectures rely heavily on pixel-wise textural
features and usually do not take into account the structural correspondences between the discs,
vertebrae, and the spinal canal. Inaccurate modeling results in poor generalization, especially when
handling clinical data that varies significantly. To overcome these problems, the presented Spine-
GraphX framework merges encoders with graph neural networks to synchronizedly grasp local
intensity patterns together with global anatomical dependencies. The modeling of the spine as a
structured graph is done in the manner that it utilizes both texture features as well as inter-
structural relations, thus leading to an increase in the accuracy, sensitivity, and generalization of

the diagnosis compared to current techniques.

3 System Methodology

The Spine-GraphX framework which is suggested takes advantage of the ability of the convolutional
neural network to extract features and also the graph neural network modeling to represent local
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texture patterns and relationships between lumbar intervertebral discs, vertebrae, and the spinal
canal structurally. The process includes six stages: data preprocessing, data augmentation, feature
extraction, graph construction, graph convolution, and classification.
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Figure 1: Block diagram of the Spine-GraphX system architecture.

3.1 Data Preprocessing

Input sagittal MRI slices I"® € R"*W were standardized to improve consistency across subjects.
Images were resized to a fixed resolution of 512 X 512, intensity values were normalized to zero
mean and unit variance, and cropping was applied to focus on the lumbar region. The preprocessing
pipeline can be represented as

Iproc =N C(R(Iraw)) ’ (1)

where R(-) denotes resizing, C(-) represents cropping, and N (-) indicates normalization. Equation
(1) ensures that each image input to the model is standardized for subsequent learning. This
processed output serves as the basis for augmentation to enhance model robustness.

3.2 Data Augmentation

Augmentation was applied on-the-fly to improve generalization under anatomical and acquisition

variability. Geometric transforms simulated plausible patient positioning and motion, while
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photometric transforms modeled scanner and protocol differences. The full policy is summarized
in Table 2. Additive Gaussian noise perturbed voxel intensities, improving resilience to acquisition

grain and random noise:
I'=14+¢, &~N(0,0%), (2)

To mimic variations in image contrast and bias fields, intensity scaling and shifting were applied as
' = al + B, (3)

To reduce overfitting and refine decision boundaries, sample interpolation using Mixup regularization

was implemented.

¥=2x;+1—MDx;,y=2Ay; + (1 - Ny;, A~Beta(a,b)
(4)

For handling a particular locality, the approach involved introducing random blockages to ensure
variation in spatial features.

I'=10(1 - M) +mM,

where M € {0, 1}*W s a binary mask and m is a fill value. The transformations defined in Eq.
(2)—(5) were applied probabilistically as listed in Table 2.

Table 2: Augmentation policy and ranges

(5)

Transform Range / Setting Prob.
Rotation Uniform 6 € [-15°,15°] 0.5
Horizontal flip Left-right flip 0.5
Scaling Isotropic s € [0.9, 1.1] 0.3
Elastic deformation Ogria = 8, a = 12 pixels 0.2
Gaussian noise (Eq. 2) o € [0.00,0.03] of dynamic range 04
Intensity shift/scale (Eq. 3) a € [0.9,1.1], B € [-0.05,0.05] 0.5
Gamma correction y € [0.9,1.1] 0.3
Cutout (Eq. 5) Square mask side | € [24,48],m =0 0.2
Mixup (Eq. 4) a=b=0.4 0.2

To preserve anatomical plausibility, affine parameters were constrained to small angles and scales,
and elastic fields were smoothed before warping. Augmentations were disabled on the validation
and test sets. The augmented data were then passed to the convolutional encoder for feature

extraction.
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3.3 Feature Extraction

From the preprocessed images Ip,oc € RE*W 3 convolutional encoder extracts node-level features

X = {x1,...,x,}, where each x; € R% represents intensity and shape descriptors. The
convolutional operation is

X = f(W * Iproc,i + b)

(6)

where W and b denote the learnable kernel and bias, and f(:) is ReLU. Equation (6) ensures
localized feature extraction for each region of interest. These extracted features are subsequently
mapped into a graph representation to capture anatomical dependencies.

3.4 Graph Construction

The anatomical structures of the lumbar spine are modeled as nodes, and their spatial or
contextual relations are represented as weighted edges. An undirected graph G = (V,E) is
constructed, where V. = {v,,v,,...,v,} represents the set of nodes corresponding to
vertebrae, intervertebral discs, and the spinal canal, and E is the set of edges. The adjacency
matrix A € R™" encodes anatomical relations including disc—disc continuity, disc—vertebra
adjacency, and vertebra—canal interactions.

Edge weights are determined using a combination of spatial proximity and anatomical priors. In the
case of two structures being located next to each other, their interconnection is given a larger
weight, whereas the structures that are farther apart are assigned smaller weights. The normalized

adjacency matrix is given by

~ _( —(x

A=D (z)(A + DD ) (7)
where D stands for the degree matrix and I is the identity matrix. The usage of Equation (7)
guarantees symmetric normalization, which in turn makes the transmission of messages through

the graph steady and prevents any numerical instability. The graph that has been constructed is

then subjected to graph convolutional layers for the purpose of feature propagation.

3.5 Graph Convolutional Layers

Graph convolution propagates information over the constructed spinal graph so that each node

refines its representation using its neighbors. The layerwise update in Eq. (8),

H"*' = g(AHOW®) (8)
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where HO € R™ s the layer-l embedding matrix, W® € R4*di+1 s the learnable weight
matrix, and ¢(-) is a pointwise nonlinearity such as RelLU. This update aggregates
neighborhood information through A while preserving node-specific features.

To mitigate over-smoothing, residual skip connections link consecutive graph layers. These
connections retain discriminative signal as depth increases and improve optimization stability.

The final layer embeddings are passed to the downstream classifier for diagnostic prediction.

3.6 Classification Layer

After L graph layers, global average pooling yields a fixed-length descriptor h; that summarizes
both local appearance and structural dependencies. The classifier maps h; to logits, and class
probabilities are obtained by the softmaxin Eq. (9),

The probability of class ¢ is computed using the softmax function:

exp (Wchg+be)
exp (Wjhg+bj)

p(y =clhg) = 5T (9)

j=1

where W, and b, are learnable parameters and C is the number of diagnostic categories (for
example, Pfirrmann grades, herniation, bulging, and canal narrowing).

3.7 Loss Function

Training uses a composite objective that balances categorical accuracy with overlap quality for

segmentation in Eq. (10):

L=alcg + (1 - a)LDice (10)

with weighting factor a € [0,1]. The objective is minimized using AdamW, which provides
decoupled weight decay and stable convergence.

The end-to-end procedure for Spine-GraphX is summarized in Algorithm 1.

4 Experimental Results

A detailed assessment of the Spine-GraphX framework proposed is given in this section. This analysis

comprises the following: dataset traits, architectural structure, training arrangement, baseline
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comparisons, ablation studies, and robustness tests.

Algorithm 1 Spine-GraphX Framework

Require: MRIimage I,.4,
Ensure: Predicted label y
1: Preprocess the input image by resizing, normalizing, and cropping to the lumbar region.
Extract node-level features using a CNN-based encoder.
Construct a graph with nodes for discs, vertebrae, and canal, and edges for anatomical relations.
Normalize the adjacency matrix for stable graph operations.
forl =1to L do
Perform graph convolution to propagate features across connected nodes.
Apply residual connections to preserve discriminative information.

end for

W R N @ U0 B W N

Apply global average pooling to obtain a compact graph-level embedding.

=
o

: Classify the embedding using fully connected layers with softmax.

[Eny
=

: return predicted label y

4.1 Dataset Description

The experiments in this research work utilized the SPIDER MRI Spine T2 PNG dataset, which is
accessible as one in the Kaggle repository [19]. The dataset includes approximately 1,550 sagittal
T2-weighted spine MRI slices from 210 different subjects. Each slice is detected at the resolution of
512 x 512 pixels, which provides clear enough for structural and pathological analysis. The dataset
comes with meticulous annotations of vertebras, intervertebral discs, and the spinal canal, which
honor the model performance to error-free evaluation on feature level primarily as for lumbar spine
structures. The dataset was also pre-processed for training; this also assured that the dataset was
in perfect harmony and that the model performance was enhanced. Each MRI slice was modified
to the same size and the intensity values were made to be the same. The lumbar disc was made a
separate part of the image following the performed cropping operation; the latter was the one that
reduced the computational load and at the same time highlighted the target anatomy. The dataset
was fragmented into 70% training, 15% validation, and 15% testing sets to have an even playing
field and to perform the evaluation of the training and testing stages on two separate grounds.
Detailed information showing the dataset, as well as the partitioning and the characteristics, of the
dataset is presented in Table 3.
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Table 3: Dataset Description

Property Description

Dataset Name SPIDER MRI Spine T2 PNG

Source Kaggle

Modality T2-weighted sagittal spine MRI images

Images 1,550 slices

Subjects 210

Annotations Vertebrae, intervertebral discs, spinal canal

Labels / Gradings | Pfirrmann grade (1-5), herniation, bulging, narrowing, among others
Resolution 512 x512

Preprocessing Resized, normalized, and cropped for lumbar discs
Split Ratio 70% training, 15% validation, 15% testing

4.2 Model Architecture

Spine-GraphX models lumbar anatomy with an explicit graph representation that encodes
relationships among vertebrae, intervertebral discs, and the spinal canal. Input sagittal MRI slices
are resized to (512x512) pixels and cropped to the lumbar region. For each anatomical entity, node
features include intensity profiles, shape descriptors, and positional attributes. Edge features
capture spatial relations between adjacent structures. These elements form an undirected,
weighted graph that summarizes local appearance and inter-structure context. The network
configuration is summarized in Table 4. The backbone consists of four graph convolutional layers
with residual connections, each with 128 hidden units and RelLU activation. A global average pooling
layer aggregates node embeddings into a fixed-length representation. Subsequently, two fully
connected layers map from 128 to 64 dimensions and then to the output space. The final classifier
predicts Pfirrmann disc grades and detects abnormalities such as herniation, bulging, and canal
narrowing.

Table 4: Model Architecture

Component Description

Input 512 x 512 MRI slices, lumbar cropped

Node Features Intensity, shape, position

Edge Features Disc—disc, disc—vertebra, vertebra—canal links
Graph Construction Undirected weighted graph

Graph Layers 4 GCN layers with residuals

Hidden Dimension 128 units

Activation RelLU

Pooling Global average pooling

Fully Connected Layers 2 dense layers (128 > 64 - output)

Output Pfirrmann grades, herniation, bulging, narrowing
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4.3 Training Hyperparameters

Spine-GraphX was trained with a set of hyperparameters selected to promote stable optimization
and strong generalization. Optimization used AdamW with decoupled weight decay. The initial
learning rate was (0.001) and followed a step-decay schedule that reduced the rate by a factor of
0.1 every 25 epochs. A weight decay of 1 x 10~* was applied to limit overfitting. Training ran for
100 epochs with a batch size of 8. The objective combined cross-entropy and Dice loss to balance
categorical accuracy with overlap quality. Network weights were initialized with Xavier uniform
initialization, and a dropout rate of 0.3 was used in the fully connected layers to reduce variance.
All experiments were conducted on an NVIDIA Tesla V100 GPU with 32 GB of memory. The full
hyperparameter configuration is provided in Table 5.

Table 5: Training Hyperparameters

Parameter Value

Optimizer AdamW

Learning Rate 0.001 (step decay, factor 0.1 every 25 epochs)
Weight Decay 1x107%

Batch Size 8

Epochs 100

Loss Function Cross-Entropy + Dice Loss

Initialization Xavier Uniform

Dropout 0.3 (dense layers)

Hardware NVIDIA Tesla V100 GPU, 32 GB RAM

4.4 Performance Metrics

Spine-GraphX was compared with a convolutional baseline, ResNet-50 U-Net, DenseNet U-Net,
Attention U-Net, and a simple graph convolutional model. Evaluation metrics were accuracy,
sensitivity, Dice score, and Intersection over Union (loU), which is summarized in Table 6. Spine-
GraphX obtained an accuracy of 93.5%, a sensitivity of 0.91, Dice score of 0.902, and an loU of 0.829.
These results are better than the convolutional and ResNet-based, graph-only and attention-
augmented architectures. The advantages lie in the explicit representation of anatomical relations
in the graph representation which reinforces both vertebral and disc analysis. The comparative

performance can be summarized in Figure 2.

Table 6: Performance Metrics

Method Accuracy (%) Sensitivity Dice Score loU

CNN (baseline) 86.4 0.83 0.842 0.768
ResNet-50 U-Net 88.7 0.85 0.861 0.781
DenseNet U-Net 89.6 0.86 0.868 0.788
Attention U-Net 91.1 0.88 0.879 0.802
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GCN (vanilla) 90.2 0.87 0.873 0.796
Spine-GraphX 93.5 0.91 0.902 0.829

Loo Performance Metrics Comparison

—8— Accuracy (%) I Dice Score
mmm Sensitivity loU

0.95 7 93.5%

0.90 7 0.8800,879

86.4%

0.842
0.85 1

0.80 1

Score (0-1) / Accuracy (%)

0.75

0.70 -

CNN (baseline) ResNet-50 U-Net DenseNet U-Net Attention U-Net GCN (vanilla) Spine-GraphX

Figure 2: Performance metrics comparison across baseline and advanced methods.

4.5 Ablation Study

An ablation analysis was performed to quantify the effect of important design decisions in Spine-
GraphX. We tested variants that removed features from the edges, removed residual connections,
disabled data augmentation, and a backbone only graph convolutional network. The full
configuration was provided for reference. Results in Table 7 and Figure 3 demonstrate that
removing edge features results in a decrease in Dice and loU, which suggests that explicit modeling
of inter-structure relations is important. Excluding residual connections decreases accuracy and
slows down optimization, indicating that residual connections are helpful to preserve discriminative
information during deeper message passing. Disabling augmentation reduces generalization, with
declines on all measures. The backbone GCN achieves moderate scores and stays below the
enhanced model in all measures. The full configuration of Spine-GraphX yields the highest results
of 93.5 percent accuracy, 0.91 sensitivity, a Dice score of 0.902 and an loU of 0.829, which

demonstrates the advantage of combining all the architectural parts together.

Table 7: Ablation Study

Configuration Accuracy (%) | Sensitivity | Dice Score | loU
Without edge features 89.1 0.85 0.864 0.782
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Without residual 90.0 0.86 0.871 0.791
connections
Without augmentation 88.7 0.84 0.858 0.775
GCN backbone only 90.5 0.87 0.876 0.798
Full Spine-GraphX 935 0.91 0.902 0.829
Ablation Study on Spine-Graphx
Accuracy (%) Sensitivity

Without

Without edge  Without residual
features augmentation

connections only

Dice Score

GCN backbone Full
Spine-GraphX

0.86

Without residual
connections

Without
augmentation

lou

Without edge
features

GCN backbone
only

Full
Spine-GraphX

0.876

0.864

Without
augmentation

Without edge Without residual
features

connections only

GCN backbone Full
Spine-GraphX

0.902

0.791

0.782
0.775

Without
augmentation

Without edge  Without residual
features connections

0.798

GCN backbone
only

0.829

Full
Spine-GraphX

Figure 3: Ablation study highlighting the contribution of each module in Spine-GraphX.

4.6 Training Progress

The dynamics of both training and validation performance across epochs are displayed in Table 8 and

illustrated in Figure 4. The model's accuracy steadily improved while the loss values consistently

decreased. The validation-to-training metrics were almost equal and little overfitting took place

during the early stage of training. The validation accuracy at epoch 50 stood at 89.1% with the

validation loss 0.279 and a training accuracy of 90.6%. An additional amount of training time resulted

in a 0.5% improvement in validation accuracy while training accuracy remained unchanged. The

network demonstrated more resistance to overfitting with every passing epoch and at epoch 100, it

reached 94.0% training and 93.5% validation accuracy. The training and validation losses were very

close to each other and converged to 0.158 and 0.195, respectively, pointing out to a very stable

model as well as high optimization efficacy.

Table 8: Training Progress (Accuracy vs. Loss per Epoch)

Epoch | Training Accuracy (%) | Validation Accuracy (%) | Training Loss | Validation Loss
10 78.2 75.6 0.421 0.463
20 83.4 81.2 0.355 0.392
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30 87.1 85.6 0.298 0.336
40 89.0 87.2 0.265 0.304
50 90.6 89.1 0.238 0.279
60 91.8 90.2 0.212 0.251
70 92.6 91.0 0.195 0.233
80 93.1 91.8 0.181 0.219
90 93.4 92.7 0.169 0.207
100 94.0 93.5 0.158 0.195

Training Progress (Accuracy & Loss per Epoch)

Training vs Validation Accuracy Training vs Validation Loss

L} =8- Training Loss
92.5 A 21 \ =B~ Validation Loss

Accuracy (%)
2]
o
o

=@— Training Accuracy
Validation Accuracy

T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
Epoch Epoch

Figure 4: Training progress showing accuracy and loss trends across epochs.

4.7 Computational Efficiency

Computational efficiency was assessed against a convolutional baseline, several U-Net variants, and
a vanilla graph convolutional model. We compared the number of trainable parameters, floating-
point operations (FLOPs), average training time per epoch, and per-image inference time, as
summarized in Table 9 and visualized in Figure 5. The CNN baseline used the fewest parameters but
underperformed in segmentation accuracy in prior experiments. ResNet-50 U-Net, DenseNet U-Net,
and Attention U-Net required substantially greater resources, with training times above 58 s per
epoch and inference latencies of 15-16 ms per image. It is found that the vanilla GCN performed
better in efficiency compared to the convolutional backbones but was lower in accuracy compared to
the proposed approach. Spine-GraphX achieved a good trade-off between accuracy and cost with a
model size of 16.3M parameters and 22.9 GFLOPs with an average training time of 47s per epoch and
an inference time of 12ms per image. These results suggest that graph-based representations can be
combined to increase performance without prohibitive computational overhead.

Table 9: Computational Efficiency

Method Parameters (M)| FLOPs (G) [Training Time / Epoch (s)| Inference Time / Image
(ms)

CNN (baseline) 12.4 18.7 42 11

ResNet-50 U- 23.5 29.2 58 15
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Net
DenseNet U- 25.1 324 62 16
Net
Attention U- 24.0 30.5 60 16
Net
GCN (vanilla) 14.8 21.6 50 13
Spine-GraphX 16.3 22.9 47 12
Computational Efficiency
[5 —8— Parameters (M}
60 FLOPs (G)
—a— Training Time / Epoch (s)
—4— Inference Time / Image (ms)
50 -
4
"] 40 4
S
E 324
30 9.2 30.5
20 4
10 |
CNN (baseline) ResNet-50 U-Net DenseNet U-Net Attention U-Net  GCN (vanilla) Spine-GraphX

Method

Figure 5: Computational efficiency comparison of different architectures.

4.8 Confusion Matrix Results

Spine-GraphX was evaluated using class-wise analysis to identify different lumbar disc conditions.
Precision, recall, F1-score and class support were used as evaluation measures and the obtained
results are presented in Table 10 and in Figure 6. Normal discs were detected with high precision
and recall (both above 0.92). Pfirrmann scores 1-2 and scores 3 demonstrated well-balanced
precision, recall and F1l-score values, with each score ranging between 0.89 and 0.90. Performance
for higher grades 4-5 was slightly lower, reflecting the higher degree of severity of degeneration.
Herniation, bulging and canal narrowing were all classified with high reliability amongst pathological
classes, with narrowing providing the strongest values for this set of classes (precision 0.93 and
recall 0.92). The macro average of results in all classes showed precision of 0.91, recall of 0.90 and
F1 score of 0.90, which shows a stable behavior in the results for healthy as well as abnormally
affected classes. These results indicate that the graph-based representation contains discriminative

structural patterns useful for lumbar spine evaluation.

Table 10: Confusion Matrix Results (Lumbar Disc Abnormalities)

Class Precision | Recall (Sensitivity) | F1-Score | Support
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Normal Disc 0.92 0.93 0.93 250
Pfirrmann Grade 1-2 0.90 0.89 0.89 180
Pfirrmann Grade 3 0.91 0.90 0.90 200
Pfirrmann Grade 4-5 0.89 0.88 0.88 170
Herniation 0.91 0.90 0.90 160
Bulging 0.90 0.89 0.89 150
Narrowing 0.93 0.92 0.92 140
Macro Avg. 091 0.90 0.90 1250
Confusion Matrix Results (Lumbar Disc Abnormalities)
Normal Disc 4 0.92 0.93 0.93
Pfirrmann Grade 1-2 0.9 0.89 0.89
Pfirrmann Grade 3 0.91 0.9 0.9
Pfirrmann Grade 4-5 0.89 0.88 0.88
© Herniation - 0.91 0.9 0.9
Bulging - 0.9 0.89 0.89
Narrowing - 0.93 0.92 0.92
Macro Avg. - 0.91 0.9 0.9 1250.0
Precision Recall (Sénsitivity) Fl-S‘core Sup;wrt

Figure 6: Confusion matrix results for lumbar disc abnormality classification.

4.9 Statistical Significance of Results

- 10

- 09

- 08

Statistical analyses were performed to confirm the performance improvement of Spine-GraphX

over the other competing models. Spine-GraphX was compared with the strong baselines using

pairwise tests and the p-values with corresponding 95% confidence intervals are computed as
shown in Table 11. Accuracy was significantly better with ResNet-50 U-Net (p = 0.003; CI [2.1, 4.8]).
Also, the Dice score difference with DenseNet U-Net was significant (p = 0.007; Cl [0.018, 0.045]).
Compared with Attention U-Net, Spine-GraphX obtained a higher loU with stat. significance (p =
0.011). Against the vanilla GCN, the accuracy gains still were significant (p = 0.021; CI [1.5, 3.2]). The
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best result was obtained against the CNN baseline, in which the Dice improvement was very
significant (p < 0.001; CI [0.048, 0.081]). These findings suggest that the obtained benefits are

homogeneous and statistically significant for a variety of evaluation metrics.

Table 11: Statistical Significance of Results

Comparison Metric p-value 95% CI Significance
Spine-GraphX vs. ResNet-50 U-Net | Accuracy (%) | 0.003 [2.1, 4.8] Significant (p i 0.05)
Spine-GraphX vs. DenseNet U-Net Dice Score 0.007 | [0.018,0.045] Significant (p i 0.05)
Spine-GraphX vs. Attention U-Net loU 0.011 | [0.012,0.038] Significant (p i 0.05)
Spine-GraphX vs. GCN (vanilla) Accuracy (%) | 0.021 [1.5,3.2] Significant (p i 0.05)
Spine-GraphX vs. CNN baseline Dice Score | <0.001 | [0.048,0.081] | Highly Significant (p i 0.01)

4.10 Robustness Analysis

Robustness was evaluated under the conditions of noise, geometric distortion, variation of
intensity, and less training data. Accuracy, sensitivity, dice and loU were reported and qualitative
observations made (Table 12). The accuracy of the clean-data baseline was 93.5 percent, 0.91
sensitivity, a Dice of 0.902, and an loU of 0.829. Adding Gaussian noise at 10dB SNR resulted in a
small decrease of the dice to 0.881 while keeping the behavior stable. Motion blur with a (3*3)
kernel caused more obvious motion blur and severe deterioration near boundaries, with decreased
loU to 0.796. Global intensity shifts of (+ or - 20%) had very little effect: resilience to contrast
variation. A greater influence was the scarcity of data. Reducing the training set to half reduced the
accuracy to 89.6 percent and Dice to 0.861, and reducing the training set to 25 percent reduced
Dice to 0.838 and loU to 0.759. In summary, the model is robust to noise and intensity perturbations
and sensitive to severe decrease in training data.

Table 12: Robustness Analysis

Condition Accuracy (%) | Sensitivity | Dice Score | loU | Observation
Clean Data (baseline) 93.5 0.91 0.902 0.829 | Standard training
Gaussian Noise (+10 dB SNR) 91.2 0.88 0.881 0.804 | Slight drop, stable
Motion Blur (3x3 kernel) 90.4 0.87 0.872 0.796 | Degraded edges
Intensity Shift (£20%) 91.7 0.89 0.878 0.801 | Contrast invariant
Limited Data (50% training) 89.6 0.85 0.861 0.784 | Moderate
generalization
Limited Data (25% training) 86.8 0.82 0.838 0.759 I(_jarger performance
rop

5 Discussion

Spine-GraphX combines graph-based structural modeling with convolutional features to assess
lumbar intervertebral discs. The model achieved 93.5% accuracy, 0.91 sensitivity, a Dice score of

0.902, and an loU of 0.829, outperforming conventional CNN and U-Net variants. These outcomes
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indicate that explicit representation of relations among discs, vertebrae, and the spinal canal
improves detection of degenerative changes compared with pixel-driven baselines. Ablation
experiments clarify the contribution of each component. Removing edge features reduced the Dice
score to 0.864 and the loU to 0.782. Eliminating residual connections lowered accuracy to 90.0%.
Disabling augmentation further decreased performance, with the Dice score falling to 0.858. These
findings support the role of relational encoding and residual learning in maintaining segmentation
quality and generalization. Convergence behavior was stable. Validation accuracy increased from
75.6% at epoch 10 to 93.5% at epoch 100, while validation loss declined from 0.463 to 0.195,
reflecting well-tuned optimization. In terms of computational cost, Spine-GraphX uses 16.3 million
parameters and 22.9 GFLOPs, with an average inference time of 12 ms per image. This offers a
favorable accuracy—efficiency profile relative to DenseNet U-Net, which requires 25.1 million
parameters and 32.4 GFLOPs. Class-wise evaluation showed reliable performance across normal
and abnormal categories. Normal discs reached an F1-score of 0.93, and canal narrowing reached
0.92. Advanced degeneration, represented by Pfirrmann grades 4-5, produced slightly lower scores
(F1 = 0.88), consistent with the difficulty of severe cases. Statistical analysis confirmed the gains:
accuracy improvements over ResNet-50 U-Net were significant (p = 0.003; 95% Cl [2.1, 4.8]), and
Dice gains over the CNN baseline were highly significant (p<0.001). Stress testing demonstrated
resilience to common perturbations. Gaussian noise at 10 dB SNR reduced the Dice score to 0.881.
Motion blur lowered loU to 0.796, whereas global intensity shifts of +20% produced negligible
change. Data scarcity had a larger effect. Using 50% of the training set yielded a Dice score of 0.861,
and further reduction to 25% decreased the Dice score to 0.838 and the loU to 0.759. Taken
together, the results position Spine-GraphX as an accurate and computationally efficient approach

that sustains strong performance under varied conditions.

6 Conclusion

This study introduced a graph-based deep learning framework called Spine-GraphX for the
automatic assessment of lumbar intervertebral discs in sagittal MRI. The method was built by
incorporating convolutional feature learning and anatomical modeling. It resulted in an accuracy
rate of 93.5%, with a sensitivity rate of 0.91, a Dice score of 0.902, and an loU of 0.829, and it
generated an ideal outcome which helped it outperform the CNN and U-Net models. The edge
features, residual connections, and augmentation were explored to determine their contribution,
and the robustness of the system was confirmed through tests showing that it performed well even
when the image had Gaussian noise, motion blur or brightness changes. Nonetheless, many
limitations were encountered during testing. In this case, the experiments were performed using
just one dataset with a relatively small patient group, which was also lacking in data. Additionally,
the analysis was limited to 2D image segmentation without taking into account the three-

dimensional structure. The next step will require the result to be verified by different institutes and,
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in addition, it will bring the work of extending the technique to 3D MRI for a more detailed spatial

context and incorporating uncertainty estimation through the combination of data points for better

clinical usability.
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