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Abstract: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by
impairments in social communication and restricted, repetitive behaviors. Recent advances in deep
learning (DL) have significantly improved our ability to detect and understand ASD by learning
discriminative patterns from diverse biomedical and behavioral data modalities such as MRI, EEG, and
eye-tracking. This survey provides a comprehensive overview of DL-based ASD detection methods,
focusing on multimodal data integration, architectural innovations, and evaluation methodologies.
Through a detailed comparative analysis of some representative studies, we identify trends, strengths,
and persistent limitations, highlighting the shift from conventional CNNs toward explainable, transformer-
based, and federated architectures.
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Introduction

The identification of Autism Spectrum Disorder (ASD) remains challenging due to its heterogeneous
etiology, diverse behavioral manifestations, and overlapping symptoms with other neurodevelopmental
conditions. While behavioral assessments remain the gold standard for diagnosis, they are subjective and
often delayed. Consequently, computational approaches leveraging neuroimaging, electrophysiology, and
behavioral signals have gained momentum for early and objective ASD detection.

Deep learning (DL) methods, particularly those capable of end-to-end feature learning, have shown great
promise in automatically identifying subtle neurobiological and behavioral patterns indicative of ASD.
Unlike conventional machine learning approaches that rely on handcrafted features, DL models can jointly
optimize feature extraction and classification tasks. Moreover, the emergence of multimodal deep
learning frameworks allows for the fusion of complementary information from different data sources
(e.g., combining fMRI and EEG) to improve diagnostic accuracy and generalization. The identification of
Autism Spectrum Disorder (ASD) remains challenging due to its heterogeneous etiology, diverse
behavioral manifestations, and overlapping symptoms with other neurodevelopmental conditions. While
behavioral assessments remain the gold standard for diagnosis, they are subjective and often delayed.
Consequently, computational approaches leveraging neuroimaging, electrophysiology, and behavioral
signals have gained momentum for early and objective ASD detection.
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Deep learning (DL) methods, particularly those capable of end-to-end feature learning, have shown great
promise in automatically identifying subtle neurobiological and behavioral patterns indicative of ASD.
Unlike conventional machine learning approaches that rely on handcrafted features, DL models can jointly
optimize feature extraction and classification tasks. Moreover, the emergence of multimodal deep
learning frameworks allows for the fusion of complementary information from different data sources
(e.g., combining fMRI and EEG) to improve diagnostic accuracy and generalization as shown in Fig.1.
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Figure 1. Multimodal Deep Learning Frameworks
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Background on Multimodal ASD Detection

Autism Spectrum Disorder (ASD) is a multifactorial neurodevelopmental condition arising from complex
interactions among genetic, neurological, and environmental factors. The heterogeneity of ASD
manifestations — ranging from social communication difficulties to cognitive and motor impairments —
makes diagnosis challenging. Conventional diagnostic protocols rely primarily on behavioral assessments
such as the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-Revised
(ADI-R). While these instruments are reliable, they are subjective and time-intensive. Consequently,
researchers have turned toward computational neurodiagnostics using neuroimaging, electrophysiology,
and behavioral data to identify objective, quantifiable biomarkers of ASD.

The Rationale for Multimodal Learning

Single-modality approaches, though valuable, provide only a partial view of the neural and behavioral
underpinnings of ASD. For instance, fMRI captures dynamic neural connectivity patterns, while sMRI
delineates structural brain abnormalities. EEG offers high temporal resolution of neural activity,
complementing the spatial precision of MRl modalities. Similarly, eye-tracking and behavioral measures
provide external indicators of cognitive and attentional deficits. Integrating these heterogeneous sources
enables a richer and more comprehensive representation of ASD pathophysiology.
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Multimodal learning seeks to exploit these complementary data streams by fusing multiple modalities in
a unified deep learning framework. Such integration can enhance classification accuracy, improve
robustness to noise or missing data, and yield insights into cross-modal relationships that may underpin
ASD symptoms. By combining neurobiological and behavioral perspectives, multimodal deep learning
aims to bridge the gap between brain-level mechanisms and observable clinical behaviors.

Commonly Used Modalities in ASD Research

Multimodal approaches to ASD detection benefit from the integration of diverse data types, each
capturing a unique aspect of the disorder's complex neurobiological and behavioral profile. Structural MRI
(sMRI) provides detailed volumetric and morphometric information about gray and white matter,
revealing neuroanatomical abnormalities such as cortical thinning and reduced corpus callosum integrity.
sMRI studies frequently highlight structural alterations in regions like the amygdala, prefrontal cortex, and
cerebellum, which are associated with social cognition and motor control. In contrast, functional MRI
(fMRI) captures dynamic brain activity through blood-oxygen-level-dependent (BOLD) signals, with
resting-state fMRI (rs-fMRI) commonly used to identify disruptions in functional connectivity across neural
networks. Deep learning models, including 3D CNNs and recurrent networks, are often employed to
extract complex spatiotemporal patterns from fMRI data. Electroencephalography (EEG) adds fine-
grained temporal resolution, enabling the analysis of event-related potentials (ERPs) and oscillatory
dynamics related to sensory and attentional processes. Hybrid models like CNN-LSTM and attention-
based architectures effectively model EEG's temporal—spatial characteristics. Eye-tracking and behavioral
data offer insight into social attention and task-related behaviors, providing non-invasive measures that
reflect real-world functioning. These features are often combined with neuroimaging data to create
richer, context-aware representations. Finally, demographic and genetic data, including variables such as
age, sex, developmental history, and genetic polymorphisms, are increasingly used in transformer-based
models to uncover population-level patterns in ASD expression, improving model generalizability and
interpretability.

Data Fusion Strategies

A critical aspect of multimodal deep learning for ASD detection lies in the fusion strategy—how
information from diverse modalities is integrated. Fusion methods are typically categorized into three
main types. Early fusion (feature-level) involves concatenating raw or preprocessed features from
multiple modalities before model training, enabling joint learning of cross-modal interactions. However,
this approach can be sensitive to variations in data scale, noise, and modality-specific artifacts.
Intermediate fusion (representation-level) addresses these issues by first encoding each modality
separately using specialized subnetworks (e.g., CNNs for MRI, LSTMs for EEG), then merging their latent
representations via concatenation, attention mechanisms, or gating. This allows for both modality-specific
learning and the modeling of shared representations. Late fusion (decision-level), by contrast, trains
separate classifiers for each modality and combines their outputs using strategies such as weighted
averaging, majority voting, or ensemble techniques. While easier to implement, late fusion often
underutilizes the rich inter-modal relationships present in the data. Recent advances (e.g., Koc et al., 2023;
Agrawal et al., 2025) increasingly favor attention-based intermediate fusion or transformer-based fusion
layers, which can dynamically adjust the contribution of each modality based on task context,
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accommodate missing data, and better handle inter-subject variability—making them particularly
promising for real-world clinical applications.

Datasets and Benchmarking Frameworks

The Autism Brain Imaging Data Exchange (ABIDE | and Il) has been instrumental in propelling multimodal
ASD research by providing harmonized MRI and fMRI datasets from multiple international sites, thereby
facilitating large-scale model training and cross-validation. In addition to ABIDE, several other datasets
contribute to the field. The National Database for Autism Research (NDAR) offers a broad repository
encompassing behavioral, imaging, and genomic data, supporting integrative analyses across modalities.
EEG-based ASD cohorts, though generally small (n < 200), offer high temporal resolution insights,
particularly in child-focused or task-specific studies. Eye-tracking datasets, often derived from visual
attention tasks, help differentiate ASD from typically developing (TD) individuals based on gaze behavior.
Furthermore, large-scale population registries, such as those described by Dick et al. (2025), provide
extensive behavioral and demographic data, making them well-suited for training data-intensive models
like transformers. However, despite these valuable resources, challenges such as dataset imbalance, inter-
site variability, and the lack of fully co-registered multimodal data continue to limit the generalizability
and reproducibility of ASD detection models across diverse clinical and research settings.

Challenges in Multimodal ASD Detection

Multimodal ASD (Autism Spectrum Disorder) detection faces several significant challenges that hinder its
clinical applicability and scalability. One key issue is heterogeneity across modalities, where differences in
spatial and temporal resolution, noise levels, and data formats complicate the alignment and
normalization of data from various sources. Additionally, data scarcity and imbalance persist, as most
publicly available datasets are limited in size and often suffer from demographic biases, particularly in
terms of gender and age, which restrict the generalizability of trained models. Computational complexity
is another major concern; combining multiple data modalities greatly increases model complexity,
necessitating efficient training strategies and access to high-performance hardware. Furthermore,
interpretability remains critical, as clinicians require transparent and explainable models to support
diagnostic decisions, yet many deep learning approaches lack interpretable outputs. Lastly, privacy and
data governance present ongoing challenges, especially in multi-institutional collaborations. Approaches
like federated learning are needed to enable cross-site training without compromising sensitive patient
data, ensuring both compliance and trust in real-world applications.

Table | summarizes key aspects such as modalities, datasets, architectures, and evaluation metrics. Ten
significant studies were analyzed to understand the progression of DL-based ASD detection. These studies
encompass a broad range of modalities, datasets, architectures, and evaluation metrics. Given the surge
of deep learning models and the increasing use of multimodal data sources, there is a critical need to
synthesize existing approaches. This survey analyzes covering modality diversity, dataset scale, model
complexity, performance, and limitations. It provides insights into methodological evolution, identifies
open challenges, and outlines future research opportunities for reliable, interpretable ASD detection
systems.
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Table 1. Summary of key aspects such as modalities, datasets, architectures, and evaluation metrics

No. | Authors / Modality Dataset Model / Evaluation | Key Findings /
Year Used Architecture | Metrics Limitations
1 Pioneered multi-site
. . Baseline ML ASD neuroimaging;
gl' '\ggrlténo ® | fMRI+sMRI | ABIDE | +CNN ;\Sf‘;rsao/cy ~ | site heterogeneity
Y extensions ? reduces
generalization.
2 Hvbrid CNN Accurac Multimodal fusion
Koc et al., fMRI + sMRI ABIDE II +¥eature 869% AUyC improved accuracy;
2023 fusion . ’ limited
fusion 0.90 . -
interpretability.
3 Mean High variance across
Ding et al., fMRI (meta- Multiple CNN, accuracy studies; overfitting
. (ABIDE + autoencoder | 79%,
2024 analysis) . , e and non-standard
private) meta-review | sensitivity .
evaluation common.
82%
4 . Accuracy
Xu et al., Private | (\N-LSTM | 93%, strong on small
EEG pediatric . e cohort (n<100); lacks
2024 hybrid Specificity L
EEG external validation.
90%
> | Ahmed et al., Eertracking | CUstom CNN + AUC0.92, Srﬁ‘;’ﬁ' 'Iztsesrgirf;fsbe"'ty‘
2023 Y & | visualtask | Attention F10.88 ’
sample.
6 Qioc/uracy Overfitting risk;
Lietal., 2023 | sMRI ABIDE | 3D CNN o preprocessing not
Sensitivity standardized
78% )
7 . Accuracy . -
Lerov et al EEG + Local Explainable 889% Adds interpretability;
y v . clinical CNN + Rule o moderate sample
2024 Behavior dataset Laver Precision (~150)
¥ 85% '
8 Gao et al Attention- Accuracy Outperforms vanilla
2024 v’ fMRI ABIDE Il based multi- | 89%, AUC | CNN; limited real-
task CNN 0.91 world testing.
9 Dick et al rP;)[:;-:CIftlon National Transformer- Z;Z}SI“VIW Highly scalable; lower
N BIStry .| registry based o biological
2025 (demographics (n>10,000) | ensemble Specificity interpretabilit
+ behavior) ! 79% P Y-
10 . SrT1aII Federated Accuracy Privacy-preserving +
Agrawal et Eye-tracking + | mixed .
al. 2075 MR multimodal Transformer | 90%, AUC | interpretable; needs
Y cohort + XAl 0.93 federated infra.

Early works, such as Di Martino et al. (2013), established baseline machine learning and CNN frameworks

using the ABIDE | dataset, achieving moderate accuracy (70-75%) but highlighting inter-site variability as
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a limiting factor. Subsequent research has shifted toward multimodal fusion and hybrid deep learning
architectures, which combine the strengths of convolutional, recurrent, and attention-based models. For
instance, Koc et al. (2023) introduced a hybrid CNN fusion model integrating fMRI and sMRI, achieving
86% accuracy and an AUC of 0.90. Xu et al. (2024) leveraged EEG data with a CNN-LSTM hybrid to model
spatiotemporal features, reaching 93% accuracy — one of the highest among unimodal EEG studies.
Recent studies have focused on explainability, scalability, and privacy preservation. Leroy et al. (2024)
developed an explainable CNN—Rule hybrid model combining EEG and behavioral data, while Agrawal et
al. (2025) integrated fMRI and eye-tracking modalities through a Federated Transformer framework that
maintained data privacy across sites. Collectively, these works demonstrate that multimodal, explainable,
and transformer-based models represent the current frontier in ASD detection research.

Key Contribution

Rationale for Automated ASD Detection

Traditional ASD diagnosis relies on observational protocols such as ADOS and ADI-R, which are labor-
intensive and dependent on clinical expertise. Evidence from neuroimaging and electrophysiology
suggests that neural abnormalities precede behavioral symptoms, motivating the development of
biologically grounded computational diagnostics. Automated systems based on deep learning can uncover
subtle neurobiological and behavioral signatures that may support early and objective diagnosis.

Evolution from Machine Learning to Deep Learning

Initial computational studies on ASD relied on traditional machine learning algorithms, such as SVMs and
random forests, trained on handcrafted features derived from fMRI and sMRI scans. While these models
achieved modest accuracies (70-75%), they struggled with feature generalization and site variability. The
shift to deep learning revolutionized ASD research by enabling automatic hierarchical feature extraction
from high-dimensional data. CNNs capture spatial representations in MRI, while RNNs and LSTMs model
temporal dependencies in EEG and behavioral sequences. Newer models incorporate attention
mechanisms and transformer-based frameworks, further improving generalization and interpretability.

Rise of Multimodal Data Integration

Autism Spectrum Disorder (ASD) is a highly heterogeneous condition, with symptoms and underlying
mechanisms manifesting across neural, behavioral, and physiological domains. To capture this complexity,
multimodal data integration shown in Fig.2, combining modalities such as fMRI, sMRI, EEG, eye-tracking,
and demographic data—has become increasingly critical in both research and clinical contexts. Each
modality offers unique and complementary insights: fMRI reveals patterns of functional connectivity
between brain regions; sMRI captures structural variations in cortical and subcortical anatomy; EEG
provides fine-grained temporal information on neural oscillations; eye-tracking reflects social-attentional
behavior; and demographic data contextualizes developmental and behavioral variability. By leveraging
these diverse signals, fusion-based models can more effectively model the multifaceted nature of ASD.
Recent studies, such as Koc et al. (2023) and Agrawal et al. (2025), demonstrate that multimodal
approaches significantly enhance predictive performance—achieving AUC scores above 0.9 and
outperforming unimodal baselines—highlighting the potential of integrated frameworks to drive more
accurate and generalizable ASD detection.
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Datasets and Benchmarking

The Autism Brain Imaging Data Exchange (ABIDE) datasets have served as major benchmarks, aggregating
thousands of MRI scans from multiple institutions. Despite their impact, cross-site variability, small sample
sizes in EEG and eye-tracking data, and non-standard preprocessing remain key challenges. Recent
research employs federated learning to enable cross-institutional model training without sharing raw
data, thereby addressing privacy and heterogeneity concerns.

Multimodal Data Integration in ASD Research
Relative Contribution of Each Modality

Demographic Data

Eye-tracking

fMRI
EEG

sMRI

Fusion-based models (Koc et al., 2023; Agrawal et al., 2025)
achieved AUC > 0.9, outperforming unimodal baselines.

Figure 2. Multimodal Data Integration in ASD Research Relative Contribution of Modalities

Method, Experiments and Results

Common performance metrics include accuracy, sensitivity, specificity, precision, and AUC. Reported
accuracies span from ~70% in early ML approaches (Di Martino et al., 2013) to above 90% in recent
multimodal transformers (Agrawal et al., 2025). However, overfitting, dataset imbalance, and the absence
of external validation remain recurring limitations, emphasizing the need for reproducible, cross-validated
evaluation frameworks.

Clinical Explainability and Ethical Considerations

Interpretability is crucial for clinical adoption. Deep models augmented with explainable Al (XAl) tools—
such as saliency mapping and attention visualization—can help identify relevant brain regions or
behavioral markers consistent with established ASD neurobiology. Moreover, ethical frameworks
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addressing privacy, bias mitigation, and transparent model reporting are essential for ensuring equitable
deployment of Al-driven diagnostics.

Discussions
The comparative synthesis of recent studies reveals several important patterns in the evolution of deep
learning-based ASD detection:

1. Shift from Unimodal to Multimodal Learning: Early studies relied on single modalities such as sMRI
or fMRI, which limited their robustness. Multimodal fusion approaches (e.g., fMRI + EEG or fMRI
+ eye-tracking) now achieve superior performance by leveraging complementary information.

2. Architectural Advancements: CNNs remain dominant due to their capacity for spatial feature
extraction. However, hybrid models (CNN-LSTM, CNN—Attention) and transformer architectures
have significantly enhanced both predictive accuracy and interpretability.

3. Explainability and Clinical Integration: There is growing emphasis on explainable deep learning
(XAl) to ensure transparency in model decisions. Studies such as Leroy et al. (2024) and Ahmed et
al. (2023) incorporate attention visualization and rule-based reasoning to identify biologically
meaningful markers.

4. Dataset and Generalization Challenges: Although datasets like ABIDE | and Il have standardized
research in this domain, site heterogeneity, limited sample size, and imbalanced demographics
continue to challenge generalization. Recent multimodal datasets and federated learning
frameworks attempt to mitigate these issues by integrating diverse populations without
centralizing data.

5. Evaluation Trends: Performance metrics such as accuracy, AUC, specificity, and sensitivity remain
standard. However, newer works also report interpretability scores, computational efficiency, and
privacy metrics, reflecting a more holistic view of model performance.

In summary, ASD detection research has evolved from exploratory, unimodal CNN approaches to
multimodal, explainable, and privacy-preserving frameworks — marking a significant step toward real-
world clinical translation.

Advances in Model Architectures

The field has witnessed rapid evolution in deep learning architectures applied to ASD detection. This
section reviews the key architectural innovations — from early CNNs to recent transformer and
explainable Al frameworks — and analyzes how they have reshaped ASD diagnosis research.

Convolutional Neural Networks (CNNs)

CNNs have been instrumental in ASD research, particularly for fMRI and sMRI data. They automatically
extract spatial hierarchies from brain volumes, eliminating the need for manual feature selection. For
example, Li et al. (2023) used a 3D CNN on ABIDE |, achieving 81% accuracy by learning volumetric gray
matter representations. However, CNNs face challenges with small datasets and limited interpretability,
making them prone to overfitting and poor cross-site generalization.
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Recurrent Neural Networks (RNNs) and LSTMs

RNNs, especially LSTMs, capture temporal dependencies in EEG and eye-tracking data. Xu et al. (2024)
demonstrated a CNN-LSTM hybrid achieving 93% accuracy, effectively modeling both spatial and
temporal dynamics. These models provide valuable insight into ASD-related neural oscillations but are
data-intensive and require careful regularization to generalize.

Attention Mechanisms

Attention modules improve model focus and interpretability by assigning dynamic weights to critical brain
regions or time points. Gao et al. (2024)’s multi-task CNN integrated attention to localize relevant
functional connectivity regions, enhancing AUC to 0.91. Similarly, Ahmed et al. (2023) used visual
attention in eye-tracking tasks to emphasize salient social gaze cues, improving interpretability and
robustness.

Transformer Architectures

Transformers, leveraging self-attention mechanisms, enable efficient learning of global dependencies
across modalities. Dick et al. (2025)’s transformer-based ensemble achieved strong scalability on a
national behavioral registry dataset. Agrawal et al. (2025) extended this by developing a Federated
Transformer + XAl model for fMRI—eye-tracking fusion, attaining 90% accuracy while preserving data
privacy. Transformers thus represent the frontier of multimodal ASD detection but require large-scale
data and computational resources.

Autoencoders and Representation Learning

Autoencoders (AEs) and their variants have been applied to learn latent feature representations from
high-dimensional data. Ding et al. (2024)’s meta-analysis revealed consistent benefits of AE-based feature
compression useful for dimensionality reduction, unsupervised AEs must be carefully tuned to ensure
discriminative power.

Explainable Al (XAl) Approaches

Recent works emphasize interpretability and clinical trust. Leroy et al. (2024) combined CNNs with rule-
based reasoning layers to generate human-understandable explanations, aligning computational findings
with  behavioral symptoms. Visualization methods such as Grad-CAM and attention
XAl thus bridges the gap between data-driven models and clinical decision-making.

Conclusions

The past decade has seen deep learning revolutionize ASD detection through increasingly sophisticated
multimodal architectures. From CNNs and LSTMs to transformers and explainable frameworks, each
generation of models has contributed to greater diagnostic precision and biological insight. The future of
ASD research lies in the convergence of multimodal learning, explainability, and federated intelligence,
paving the way for early, objective, and personalized ASD assessment. Deep learning has revolutionized
ASD detection, evolving from traditional feature-based classifiers to sophisticated multimodal,
explainable, and federated architectures. While performance metrics are encouraging—reaching
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accuracies above 90% in recent studies—clinical reliability, interpretability, and generalization remain key
bottlenecks. Future research should focus on standardized multimodal datasets, transparent model
evaluation, and privacy-preserving explainable frameworks to ensure equitable and trustworthy Al in
neurodevelopmental diagnosis.

The architectural evolution in Autism Spectrum Disorder (ASD) detection is increasingly characterized by
integrative, interpretable, and scalable approaches. Future research is expected to emphasize several key
directions: the use of Graph Neural Networks (GNNs) to model complex brain connectivity patterns; self-
supervised pretraining techniques leveraging large-scale neuroimaging datasets; federated multimodal
systems that enable collaborative learning while preserving data privacy; and causality-aware models that
aim to establish clearer links between neural mechanisms and behavioral outcomes. Together, these
advancements are poised to drive the development of clinically deployable models that not only deliver
high predictive accuracy but also adhere to principles of transparency, fairness, and ethical responsibility.
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