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Abstract: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by 

impairments in social communication and restricted, repetitive behaviors. Recent advances in deep 

learning (DL) have significantly improved our ability to detect and understand ASD by learning 

discriminative patterns from diverse biomedical and behavioral data modalities such as MRI, EEG, and 

eye-tracking. This survey provides a comprehensive overview of DL-based ASD detection methods, 

focusing on multimodal data integration, architectural innovations, and evaluation methodologies. 

Through a detailed comparative analysis of some representative studies, we identify trends, strengths, 

and persistent limitations, highlighting the shift from conventional CNNs toward explainable, transformer-

based, and federated architectures. 
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Introduction 

 

The identification of Autism Spectrum Disorder (ASD) remains challenging due to its heterogeneous 

etiology, diverse behavioral manifestations, and overlapping symptoms with other neurodevelopmental 

conditions. While behavioral assessments remain the gold standard for diagnosis, they are subjective and 

often delayed. Consequently, computational approaches leveraging neuroimaging, electrophysiology, and 

behavioral signals have gained momentum for early and objective ASD detection. 

Deep learning (DL) methods, particularly those capable of end-to-end feature learning, have shown great 

promise in automatically identifying subtle neurobiological and behavioral patterns indicative of ASD. 

Unlike conventional machine learning approaches that rely on handcrafted features, DL models can jointly 

optimize feature extraction and classification tasks. Moreover, the emergence of multimodal deep 

learning frameworks allows for the fusion of complementary information from different data sources 

(e.g., combining fMRI and EEG) to improve diagnostic accuracy and generalization. The identification of 

Autism Spectrum Disorder (ASD) remains challenging due to its heterogeneous etiology, diverse 

behavioral manifestations, and overlapping symptoms with other neurodevelopmental conditions. While 

behavioral assessments remain the gold standard for diagnosis, they are subjective and often delayed. 

Consequently, computational approaches leveraging neuroimaging, electrophysiology, and behavioral 

signals have gained momentum for early and objective ASD detection. 
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Deep learning (DL) methods, particularly those capable of end-to-end feature learning, have shown great 

promise in automatically identifying subtle neurobiological and behavioral patterns indicative of ASD. 

Unlike conventional machine learning approaches that rely on handcrafted features, DL models can jointly 

optimize feature extraction and classification tasks. Moreover, the emergence of multimodal deep 

learning frameworks allows for the fusion of complementary information from different data sources 

(e.g., combining fMRI and EEG) to improve diagnostic accuracy and generalization as shown in Fig.1. 

 

 
Figure 1. Multimodal Deep Learning Frameworks 

 

Related work 

 

Background on Multimodal ASD Detection 

Autism Spectrum Disorder (ASD) is a multifactorial neurodevelopmental condition arising from complex 

interactions among genetic, neurological, and environmental factors. The heterogeneity of ASD 

manifestations — ranging from social communication difficulties to cognitive and motor impairments — 

makes diagnosis challenging. Conventional diagnostic protocols rely primarily on behavioral assessments 

such as the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-Revised 

(ADI-R). While these instruments are reliable, they are subjective and time-intensive. Consequently, 

researchers have turned toward computational neurodiagnostics using neuroimaging, electrophysiology, 

and behavioral data to identify objective, quantifiable biomarkers of ASD. 

 

The Rationale for Multimodal Learning 

Single-modality approaches, though valuable, provide only a partial view of the neural and behavioral 

underpinnings of ASD. For instance, fMRI captures dynamic neural connectivity patterns, while sMRI 

delineates structural brain abnormalities. EEG offers high temporal resolution of neural activity, 

complementing the spatial precision of MRI modalities. Similarly, eye-tracking and behavioral measures 

provide external indicators of cognitive and attentional deficits. Integrating these heterogeneous sources 

enables a richer and more comprehensive representation of ASD pathophysiology. 



  

SGS Initiative, VOL. 1 NO .2 (2026): LGPR 

Multimodal learning seeks to exploit these complementary data streams by fusing multiple modalities in 

a unified deep learning framework. Such integration can enhance classification accuracy, improve 

robustness to noise or missing data, and yield insights into cross-modal relationships that may underpin 

ASD symptoms. By combining neurobiological and behavioral perspectives, multimodal deep learning 

aims to bridge the gap between brain-level mechanisms and observable clinical behaviors. 

 

Commonly Used Modalities in ASD Research 

Multimodal approaches to ASD detection benefit from the integration of diverse data types, each 

capturing a unique aspect of the disorder's complex neurobiological and behavioral profile. Structural MRI 

(sMRI) provides detailed volumetric and morphometric information about gray and white matter, 

revealing neuroanatomical abnormalities such as cortical thinning and reduced corpus callosum integrity. 

sMRI studies frequently highlight structural alterations in regions like the amygdala, prefrontal cortex, and 

cerebellum, which are associated with social cognition and motor control. In contrast, functional MRI 

(fMRI) captures dynamic brain activity through blood-oxygen-level-dependent (BOLD) signals, with 

resting-state fMRI (rs-fMRI) commonly used to identify disruptions in functional connectivity across neural 

networks. Deep learning models, including 3D CNNs and recurrent networks, are often employed to 

extract complex spatiotemporal patterns from fMRI data. Electroencephalography (EEG) adds fine-

grained temporal resolution, enabling the analysis of event-related potentials (ERPs) and oscillatory 

dynamics related to sensory and attentional processes. Hybrid models like CNN–LSTM and attention-

based architectures effectively model EEG's temporal–spatial characteristics. Eye-tracking and behavioral 

data offer insight into social attention and task-related behaviors, providing non-invasive measures that 

reflect real-world functioning. These features are often combined with neuroimaging data to create 

richer, context-aware representations. Finally, demographic and genetic data, including variables such as 

age, sex, developmental history, and genetic polymorphisms, are increasingly used in transformer-based 

models to uncover population-level patterns in ASD expression, improving model generalizability and 

interpretability. 

 

Data Fusion Strategies 

A critical aspect of multimodal deep learning for ASD detection lies in the fusion strategy—how 

information from diverse modalities is integrated. Fusion methods are typically categorized into three 

main types. Early fusion (feature-level) involves concatenating raw or preprocessed features from 

multiple modalities before model training, enabling joint learning of cross-modal interactions. However, 

this approach can be sensitive to variations in data scale, noise, and modality-specific artifacts. 

Intermediate fusion (representation-level) addresses these issues by first encoding each modality 

separately using specialized subnetworks (e.g., CNNs for MRI, LSTMs for EEG), then merging their latent 

representations via concatenation, attention mechanisms, or gating. This allows for both modality-specific 

learning and the modeling of shared representations. Late fusion (decision-level), by contrast, trains 

separate classifiers for each modality and combines their outputs using strategies such as weighted 

averaging, majority voting, or ensemble techniques. While easier to implement, late fusion often 

underutilizes the rich inter-modal relationships present in the data. Recent advances (e.g., Koc et al., 2023; 

Agrawal et al., 2025) increasingly favor attention-based intermediate fusion or transformer-based fusion 

layers, which can dynamically adjust the contribution of each modality based on task context, 
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accommodate missing data, and better handle inter-subject variability—making them particularly 

promising for real-world clinical applications. 

 

Datasets and Benchmarking Frameworks 

The Autism Brain Imaging Data Exchange (ABIDE I and II) has been instrumental in propelling multimodal 

ASD research by providing harmonized MRI and fMRI datasets from multiple international sites, thereby 

facilitating large-scale model training and cross-validation. In addition to ABIDE, several other datasets 

contribute to the field. The National Database for Autism Research (NDAR) offers a broad repository 

encompassing behavioral, imaging, and genomic data, supporting integrative analyses across modalities. 

EEG-based ASD cohorts, though generally small (n < 200), offer high temporal resolution insights, 

particularly in child-focused or task-specific studies. Eye-tracking datasets, often derived from visual 

attention tasks, help differentiate ASD from typically developing (TD) individuals based on gaze behavior. 

Furthermore, large-scale population registries, such as those described by Dick et al. (2025), provide 

extensive behavioral and demographic data, making them well-suited for training data-intensive models 

like transformers. However, despite these valuable resources, challenges such as dataset imbalance, inter-

site variability, and the lack of fully co-registered multimodal data continue to limit the generalizability 

and reproducibility of ASD detection models across diverse clinical and research settings. 

 

Challenges in Multimodal ASD Detection 

Multimodal ASD (Autism Spectrum Disorder) detection faces several significant challenges that hinder its 

clinical applicability and scalability. One key issue is heterogeneity across modalities, where differences in 

spatial and temporal resolution, noise levels, and data formats complicate the alignment and 

normalization of data from various sources. Additionally, data scarcity and imbalance persist, as most 

publicly available datasets are limited in size and often suffer from demographic biases, particularly in 

terms of gender and age, which restrict the generalizability of trained models. Computational complexity 

is another major concern; combining multiple data modalities greatly increases model complexity, 

necessitating efficient training strategies and access to high-performance hardware. Furthermore, 

interpretability remains critical, as clinicians require transparent and explainable models to support 

diagnostic decisions, yet many deep learning approaches lack interpretable outputs. Lastly, privacy and 

data governance present ongoing challenges, especially in multi-institutional collaborations. Approaches 

like federated learning are needed to enable cross-site training without compromising sensitive patient 

data, ensuring both compliance and trust in real-world applications. 

 

Table I summarizes key aspects such as modalities, datasets, architectures, and evaluation metrics. Ten 

significant studies were analyzed to understand the progression of DL-based ASD detection. These studies 

encompass a broad range of modalities, datasets, architectures, and evaluation metrics. Given the surge 

of deep learning models and the increasing use of multimodal data sources, there is a critical need to 

synthesize existing approaches. This survey analyzes  covering modality diversity, dataset scale, model 

complexity, performance, and limitations. It provides insights into methodological evolution, identifies 

open challenges, and outlines future research opportunities for reliable, interpretable ASD detection 

systems. 
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Table 1. Summary of  key aspects such as modalities, datasets, architectures, and evaluation metrics 

 

No. Authors / 
Year 

Modality Dataset 
Used 

Model / 
Architecture 

Evaluation 
Metrics 

Key Findings / 
Limitations 

1 

Di Martino et 
al., 2013 

fMRI + sMRI ABIDE I 
Baseline ML 
+ CNN 
extensions 

Accuracy ≈ 
70–75% 

Pioneered multi-site 
ASD neuroimaging; 
site heterogeneity 
reduces 
generalization. 

2 
Koc et al., 
2023 

fMRI + sMRI 
fusion 

ABIDE II 
Hybrid CNN 
+ feature 
fusion 

Accuracy 
86%, AUC 
0.90 

Multimodal fusion 
improved accuracy; 
limited 
interpretability. 

3 

Ding et al., 
2024 

fMRI (meta-
analysis) 

Multiple 
(ABIDE + 
private) 

CNN, 
autoencoder 
meta-review 

Mean 
accuracy 
79%, 
sensitivity 
82% 

High variance across 
studies; overfitting 
and non-standard 
evaluation common. 

4 
Xu et al., 
2024 

EEG 
Private 
pediatric 
EEG 

CNN–LSTM 
hybrid 

Accuracy 
93%, 
Specificity 
90% 

Strong on small 
cohort (n<100); lacks 
external validation. 

5 
Ahmed et al., 
2023 

Eye-tracking 
Custom 
visual task 

CNN + 
Attention 

AUC 0.92, 
F1 0.88 

Good interpretability; 
small, less diverse 
sample. 

6 

Li et al., 2023 sMRI ABIDE I 3D CNN 

Accuracy 
81%, 
Sensitivity 
78% 

Overfitting risk; 
preprocessing not 
standardized. 

7 
Leroy et al., 
2024 

EEG + 
Behavior 

Local 
clinical 
dataset 

Explainable 
CNN + Rule 
Layer 

Accuracy 
88%, 
Precision 
85% 

Adds interpretability; 
moderate sample 
(~150). 

8 
Gao et al., 
2024 

fMRI ABIDE II 
Attention-
based multi-
task CNN 

Accuracy 
89%, AUC 
0.91 

Outperforms vanilla 
CNN; limited real-
world testing. 

9 
Dick et al., 
2025 

Population 
registry 
(demographics 
+ behavior) 

National 
registry 
(n>10,000) 

Transformer-
based 
ensemble 

Sensitivity 
82%, 
Specificity 
79% 

Highly scalable; lower 
biological 
interpretability. 

10 
Agrawal et 
al., 2025 

Eye-tracking + 
fMRI 

Small 
mixed 
multimodal 
cohort 

Federated 
Transformer 
+ XAI 

Accuracy 
90%, AUC 
0.93 

Privacy-preserving + 
interpretable; needs 
federated infra. 

 

Early works, such as Di Martino et al. (2013), established baseline machine learning and CNN frameworks 

using the ABIDE I dataset, achieving moderate accuracy (70–75%) but highlighting inter-site variability as 
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a limiting factor. Subsequent research has shifted toward multimodal fusion and hybrid deep learning 

architectures, which combine the strengths of convolutional, recurrent, and attention-based models. For 

instance, Koc et al. (2023) introduced a hybrid CNN fusion model integrating fMRI and sMRI, achieving 

86% accuracy and an AUC of 0.90. Xu et al. (2024) leveraged EEG data with a CNN–LSTM hybrid to model 

spatiotemporal features, reaching 93% accuracy — one of the highest among unimodal EEG studies. 

Recent studies have focused on explainability, scalability, and privacy preservation. Leroy et al. (2024) 

developed an explainable CNN–Rule hybrid model combining EEG and behavioral data, while Agrawal et 

al. (2025) integrated fMRI and eye-tracking modalities through a Federated Transformer framework that 

maintained data privacy across sites. Collectively, these works demonstrate that multimodal, explainable, 

and transformer-based models represent the current frontier in ASD detection research. 

 

Key Contribution 

Rationale for Automated ASD Detection 

Traditional ASD diagnosis relies on observational protocols such as ADOS and ADI-R, which are labor-

intensive and dependent on clinical expertise. Evidence from neuroimaging and electrophysiology 

suggests that neural abnormalities precede behavioral symptoms, motivating the development of 

biologically grounded computational diagnostics. Automated systems based on deep learning can uncover 

subtle neurobiological and behavioral signatures that may support early and objective diagnosis. 

 

Evolution from Machine Learning to Deep Learning 

Initial computational studies on ASD relied on traditional machine learning algorithms, such as SVMs and 

random forests, trained on handcrafted features derived from fMRI and sMRI scans. While these models 

achieved modest accuracies (70–75%), they struggled with feature generalization and site variability. The 

shift to deep learning revolutionized ASD research by enabling automatic hierarchical feature extraction 

from high-dimensional data. CNNs capture spatial representations in MRI, while RNNs and LSTMs model 

temporal dependencies in EEG and behavioral sequences. Newer models incorporate attention 

mechanisms and transformer-based frameworks, further improving generalization and interpretability. 

 

Rise of Multimodal Data Integration 

Autism Spectrum Disorder (ASD) is a highly heterogeneous condition, with symptoms and underlying 

mechanisms manifesting across neural, behavioral, and physiological domains. To capture this complexity, 

multimodal data integration shown in Fig.2, combining modalities such as fMRI, sMRI, EEG, eye-tracking, 

and demographic data—has become increasingly critical in both research and clinical contexts. Each 

modality offers unique and complementary insights: fMRI reveals patterns of functional connectivity 

between brain regions; sMRI captures structural variations in cortical and subcortical anatomy; EEG 

provides fine-grained temporal information on neural oscillations; eye-tracking reflects social-attentional 

behavior; and demographic data contextualizes developmental and behavioral variability. By leveraging 

these diverse signals, fusion-based models can more effectively model the multifaceted nature of ASD. 

Recent studies, such as Koc et al. (2023) and Agrawal et al. (2025), demonstrate that multimodal 

approaches significantly enhance predictive performance—achieving AUC scores above 0.9 and 

outperforming unimodal baselines—highlighting the potential of integrated frameworks to drive more 

accurate and generalizable ASD detection. 
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Datasets and Benchmarking 

The Autism Brain Imaging Data Exchange (ABIDE) datasets have served as major benchmarks, aggregating 

thousands of MRI scans from multiple institutions. Despite their impact, cross-site variability, small sample 

sizes in EEG and eye-tracking data, and non-standard preprocessing remain key challenges. Recent 

research employs federated learning to enable cross-institutional model training without sharing raw 

data, thereby addressing privacy and heterogeneity concerns. 

 

 

 

 
Figure 2. Multimodal Data Integration in ASD Research Relative Contribution of Modalities 

 

 

Method, Experiments and Results 

Common performance metrics include accuracy, sensitivity, specificity, precision, and AUC. Reported 

accuracies span from ~70% in early ML approaches (Di Martino et al., 2013) to above 90% in recent 

multimodal transformers (Agrawal et al., 2025). However, overfitting, dataset imbalance, and the absence 

of external validation remain recurring limitations, emphasizing the need for reproducible, cross-validated 

evaluation frameworks. 

 

Clinical Explainability and Ethical Considerations 

Interpretability is crucial for clinical adoption. Deep models augmented with explainable AI (XAI) tools—

such as saliency mapping and attention visualization—can help identify relevant brain regions or 

behavioral markers consistent with established ASD neurobiology. Moreover, ethical frameworks 
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addressing privacy, bias mitigation, and transparent model reporting are essential for ensuring equitable 

deployment of AI-driven diagnostics. 

 

Discussions 

The comparative synthesis of recent studies reveals several important patterns in the evolution of deep 

learning-based ASD detection: 

1. Shift from Unimodal to Multimodal Learning: Early studies relied on single modalities such as sMRI 
or fMRI, which limited their robustness. Multimodal fusion approaches (e.g., fMRI + EEG or fMRI 
+ eye-tracking) now achieve superior performance by leveraging complementary information. 

2. Architectural Advancements: CNNs remain dominant due to their capacity for spatial feature 

extraction. However, hybrid models (CNN–LSTM, CNN–Attention) and transformer architectures 

have significantly enhanced both predictive accuracy and interpretability. 

3. Explainability and Clinical Integration: There is growing emphasis on explainable deep learning 

(XAI) to ensure transparency in model decisions. Studies such as Leroy et al. (2024) and Ahmed et 

al. (2023) incorporate attention visualization and rule-based reasoning to identify biologically 

meaningful markers. 

4. Dataset and Generalization Challenges: Although datasets like ABIDE I and II have standardized 

research in this domain, site heterogeneity, limited sample size, and imbalanced demographics 

continue to challenge generalization. Recent multimodal datasets and federated learning 

frameworks attempt to mitigate these issues by integrating diverse populations without 

centralizing data. 

5. Evaluation Trends: Performance metrics such as accuracy, AUC, specificity, and sensitivity remain 

standard. However, newer works also report interpretability scores, computational efficiency, and 

privacy metrics, reflecting a more holistic view of model performance. 

 

In summary, ASD detection research has evolved from exploratory, unimodal CNN approaches to 

multimodal, explainable, and privacy-preserving frameworks — marking a significant step toward real-

world clinical translation. 

 

Advances in Model Architectures 

The field has witnessed rapid evolution in deep learning architectures applied to ASD detection. This 

section reviews the key architectural innovations — from early CNNs to recent transformer and 

explainable AI frameworks — and analyzes how they have reshaped ASD diagnosis research. 

 

Convolutional Neural Networks (CNNs) 

CNNs have been instrumental in ASD research, particularly for fMRI and sMRI data. They automatically 

extract spatial hierarchies from brain volumes, eliminating the need for manual feature selection. For 

example, Li et al. (2023) used a 3D CNN on ABIDE I, achieving 81% accuracy by learning volumetric gray 

matter representations. However, CNNs face challenges with small datasets and limited interpretability, 

making them prone to overfitting and poor cross-site generalization. 
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Recurrent Neural Networks (RNNs) and LSTMs 

RNNs, especially LSTMs, capture temporal dependencies in EEG and eye-tracking data. Xu et al. (2024) 

demonstrated a CNN–LSTM hybrid achieving 93% accuracy, effectively modeling both spatial and 

temporal dynamics. These models provide valuable insight into ASD-related neural oscillations but are 

data-intensive and require careful regularization to generalize. 

 

Attention Mechanisms 

Attention modules improve model focus and interpretability by assigning dynamic weights to critical brain 

regions or time points. Gao et al. (2024)’s multi-task CNN integrated attention to localize relevant 

functional connectivity regions, enhancing AUC to 0.91. Similarly, Ahmed et al. (2023) used visual 

attention in eye-tracking tasks to emphasize salient social gaze cues, improving interpretability and 

robustness. 

 

Transformer Architectures 

Transformers, leveraging self-attention mechanisms, enable efficient learning of global dependencies 

across modalities. Dick et al. (2025)’s transformer-based ensemble achieved strong scalability on a 

national behavioral registry dataset. Agrawal et al. (2025) extended this by developing a Federated 

Transformer + XAI model for fMRI–eye-tracking fusion, attaining 90% accuracy while preserving data 

privacy. Transformers thus represent the frontier of multimodal ASD detection but require large-scale 

data and computational resources. 

 

Autoencoders and Representation Learning 

Autoencoders (AEs) and their variants have been applied to learn latent feature representations from 

high-dimensional data. Ding et al. (2024)’s meta-analysis revealed consistent benefits of AE-based feature 

compression useful for dimensionality reduction, unsupervised AEs must be carefully tuned to ensure 

discriminative power. 

 

Explainable AI (XAI) Approaches 

Recent works emphasize interpretability and clinical trust. Leroy et al. (2024) combined CNNs with rule-

based reasoning layers to generate human-understandable explanations, aligning computational findings 

with behavioral symptoms. Visualization methods such as Grad-CAM and attention  

XAI thus bridges the gap between data-driven models and clinical decision-making. 

 

Conclusions 

The past decade has seen deep learning revolutionize ASD detection through increasingly  sophisticated 

multimodal architectures. From CNNs and LSTMs to transformers and explainable frameworks, each 

generation of models has contributed to greater diagnostic precision and biological insight. The future of 

ASD research lies in the convergence of multimodal learning, explainability, and federated intelligence, 

paving the way for early, objective, and personalized ASD assessment. Deep learning has revolutionized 

ASD detection, evolving from traditional feature-based classifiers to sophisticated multimodal, 

explainable, and federated architectures. While performance metrics are encouraging—reaching 
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accuracies above 90% in recent studies—clinical reliability, interpretability, and generalization remain key 

bottlenecks. Future research should focus on standardized multimodal datasets, transparent model 

evaluation, and privacy-preserving explainable frameworks to ensure equitable and trustworthy AI in 

neurodevelopmental diagnosis. 

The architectural evolution in Autism Spectrum Disorder (ASD) detection is increasingly characterized by 

integrative, interpretable, and scalable approaches. Future research is expected to emphasize several key 

directions: the use of Graph Neural Networks (GNNs) to model complex brain connectivity patterns; self-

supervised pretraining techniques leveraging large-scale neuroimaging datasets; federated multimodal 

systems that enable collaborative learning while preserving data privacy; and causality-aware models that 

aim to establish clearer links between neural mechanisms and behavioral outcomes. Together, these 

advancements are poised to drive the development of clinically deployable models that not only deliver 

high predictive accuracy but also adhere to principles of transparency, fairness, and ethical responsibility. 
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