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Abstract: UAVs which carry payloads are highly unstable during descent as a result of changing center of 
gravity, asymmetry in aerodynamic properties and external force being highly unpredictable. Traditional 
controllers like PID and MPC are not very effective in such nonlinear disturbances particularly when the 
payload is varied throughout the flight. In this study, a Digital Twin-based deep reinforcement learning 
architecture of real-time payload-stable landing and energy-optimal descent control is suggested. High-
fidelity Digital Twin is a model that considers the impact of payload displacement, thrust asymmetry, drag 
variations, and battery properties up to 1 kHz, allowing a SAC agent to test possible corrective actions 
before implementing them to the real UAV. Tests using 0.5-1.2kg payloads demonstrate a 38 percent 
decrease in landing attitude error, 27 percent decrease in descent energy, and 42 percent decrease in 
lateral drift over an optimized MPC baseline. The twin foresees instability to occur 0.18 s before physical 
sensors thus permitting proactive stabilization. An explanatory layer comes up with explanations that can 
be read by humans, which correlates the system with the explainability and human-focused values of 
Industry 5.0. 
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Introduction 

The nonlinear process of landing a UAV with payload on it is a complicated process due to the imbalance 
in thrusts, aerodynamic disturbances, and changes in center-of-gravity caused by the addition of the 
payload. Minimum offsets between payloads generate roll-pitch torques, which are transferred to 
subsequent lateral drift and oscillatory descent strategies. Classical PID controllers do not predict 
nonlinear disturbances but the MPC ones demand the availability of accurate models and fail when the 
payload distribution changes. DRL agents are adaptive, but can not be deployed immediately because of 
safety issues during exploration. Digital Twins address this by offering a high-frequency predictive 
reflection of the UAV dynamic states so that virtual assessment of actions can be done in real-time prior 
to physical implementation. The combination of DT prediction and SAC control gives a proactive 
stabilization process in line with Industry 5.0 where transparency, safety, resilience, and human alignment 
are the key. This study introduces a single DTDRL landing controller that is able to sustain the stability and 
reduce the energy usage of payload-carrying UAVs. 

Methodology 

The scheme of work of the proposed methodology is arranged as a closely-knit cyber-physical cycle 
whereby sensing, prediction, simulation and control functions are performed in inseparable sequence 
throughout UAV landing. The system starts by the UAV broadcasting high-frequency IMU, barometer, 
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motor-thrust feedback and optical-flow data to the processor on board. Such uncodified measurements 
are usually subject to drift, noise due to vibrations, and short-lived bias, thus sensor fusion step with the 
use of a more advanced Kalman filter provides a smooth estimate of attitude, descent velocity, direction 
of drift, and angular acceleration. These smoothed estimations constitute the real-time input into the 
Digital Twin which is an operation as a high-fidelity dynamic simulation of the UAV at 1 kHz. The twin 
solves a payload-augmented form of the Newton-Euler equations, with the torque caused by the payload 
being explicitly represented as an asymmetric moment due to the distance between the center of gravity 
and the payload. This modeling is critical since a slight shift in the payload will result in sustained roll-pitch 
imbalance during landing, and the twins have to record the magnitude and the dynamics of this imbalance 
at milliseconds resolution. 

The virtual environment within the twin, a vertical descent model is modeled with the help of 
physically grounded damping formulation which considers the saturation of thrust, aerodynamic drag, 
and ground-effect behavior as the UAV closes to the landing surface. In the mean time the motor thrust 
lag and battery internal resistance are modeled in terms of a curve of thrust-power, through which the 
twin can forecast not only the stability, but the energy needed to perform a certain action. The twin 
compares the Lyapunov index periodically on the basis of the estimated rollpitch development, when the 
forecasted derivative of the Lyapunov index has a positive value in excess of a few cycles, the twin issues 
a warning of an impending instability. This prediction is made before real sensors can provide it, and the 
reinforcement-learning controller is able to spend more time adjusting the descent trajectory. 

The SAC controller is provided with a small yet informative state vector that includes predicted 
attitude deviation, generated torque imbalance due to disturbance in the payload, lateral drift velocity, 
and current descent rate, and the instantaneous energy slope calculated by the battery model. The SAC 
agent is able to generate proactive control in contrast to the traditional controllers that can only respond 
to observed errors, based on the future predictions provided by the Digital Twin. Continuous changes in 
the motor thrust distribution and fine adjustments in the distribution of the pitch and roll ensure a stable 
descent profile are issued by the agent. Nevertheless, the execution of the same commands is virtually 
tested in the Digital Twin before the actual UAV carries them out over a short predictive horizon. In this 
virtual rollout, the twin tests the effects of the ordered action on the amplification of the drift, or the rise 
of the torque asymmetry, or the appearance of the rapid oscillations, or the emergence of the undesirable 
energy spikes. Whether due to a prediction of instability by the simulation, or an alternative cause, the 
control logic suppresses or modifies the action. The mechanism turns the Digital Twin into a safety 
supervisor, which enables the reinforcement learning to be applied in the real flight without the threat of 
catastrophic behavior. 

The reinforcement-learning policy is implemented along the lines of the reward scheme that punishes any 
deviation of the attitude that is large, rapid drift accumulation, and redundant thrust spending. Vertical 
sliding and reduced energy curves are rewarded and the controller can reduce the oscillations as well as 
power consumption at the same time. The landing process will have the twin constantly updating its 
internal status to reflect the changes in payload dynamics, such as small changes in mass distribution as 
it moves or tilts. The described updates affect the predicted torque offset, such that the SAC agent is never 
fed static approximations, but is always fed with the actual, real-time, payload-sensitive dynamics. 

One of the cognitive explanation modules operates parallel to the control process, and it gathers 
internal messages of the twin and SAC agent. This module translates complex physical and mathematical 
arguments to messages that operators can understand explaining why a given thrust correction or 
attitude action was executed. Rather than describing the state of raw numbers, the system gives 
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understandable information about the operations like Predicted attitude divergence-reducing right motor 
thrust by 6% to balance payload torque. This makes the methodology consistent with Industry 5.0 best 
practices, in which transparency and control behavior that can be understood by humans are required to 
conduct safe collaborative operation. 

To conclude, the methodology constitutes a self-correcting pipeline of sensor-based physical 
states to Digital Twin predictions, reinforcement-based decision-making, and real-world corrections 
existing in real time. The controller does not make blind moves, but any move is first analyzed in a high-
fidelity virtual environment to make sure that it will be stable, safe, and the energy performance of the 
landing is optimised. 

Results and Discussion 

The load between 0.5 kg and 1.2 kg was experimented on the system during 5-9 m/s wind disturbance. 
The Digital Twin was in line with the physical UAV and anticipated instability 0.18 s ahead of sensor-only 
techniques. It was a prediction made early so that the SAC controller could implement pre-emptive torque 
balancing and drift correction. The deviation in attitude on landing reduced by about 38 percent when 
MPC was compared to DT–SAC with the values of attitude deviation reduced to ±7.8° and 4.8° 
respectively. 

Figure 1 indicates the comparative FFT of landing disturbances in which the baseline and the proposed 
controller have high oscillations and high-frequency disturbances of the attitude respectively. 

 

Figure 1. FFT spectra of landing disturbance signals under MPC baseline and DT–SAC controller, showing 
reduction in oscillatory peaks and improved stability. 

The descent path was also enhanced vertically, and the SAC controller generated less bumpy altitude 
profiles and lowered the oscillation of touchdown velocity. Figure 2 shows the RMS drift in landing passes 
where the drift decreases uniformly in 20 trials using the proposed system. 
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Figure 2. RMS landing drift comparison between MPC and DT–SAC across multiple landing attempts. 
 

The predictive thrust allocation increased the energy consumption. The drop in energy between the 14.2 
Wh to 10.3 Wh with the DTDRL controller was the descent energy. It is energy efficient as the controller 
does not make over corrections and a constant descent rate is maintained. The energy per landing of MPC 
and DT-DRL is indicated in figure 3. 

 

Figure 3. Energy consumption per landing for MPC vs DT–SAC controller, demonstrating reduced power 
requirements. 
 

The reinforcement-learning agent smoothed out during training with cumulative reward versus training 
episode curve trends indicated in Figure 4. The upward trend is the sign of uniform learning and the 
stabilization of the descent strategy. 
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Figure 4. Cumulative reward convergence of SAC agent during training, demonstrating stable learning 
behavior. 
 

All improvements have been summarized in Table 1. The system exhibited superiority over MPC in all its 
measures such as drift, attitude error, and energy use, proving the usefulness of Digital Twins integration 
with reinforcement learning in real-time UAV landing. 

Table 1. Summary of Performance Improvements for Payload-Stable UAV Landing 

Metric MPC Baseline Proposed DT–SAC Improvement 

Attitude Error (°) ±7.8 ±4.8 38% ↓ 

Lateral Drift (m) 0.42 0.24 42% ↓ 

Energy per Landing (Wh) 14.2 10.3 27% ↓ 

Touchdown Stability Index 0.91 0.64 29% ↑ 

 

Conclusion 

This paper introduces a Digital Twin-based reinforcement-learning controller of payload-stable and 
energy-efficient UAV landing. High frequency synchronization of the virtual and physical dynamics enables 
the system to forecast instability beforehand and implement the DRL policies safely. Experiments prove 
significant improvements on stability, reduction of drift and energy savings. The human trust is improved 
through the cognitive explanation layer, and thus, the system can be aligned with Industry 5.0 values. The 
future research involves dynamic payload modeling, UAV collaboration landing, and hybrid Digital Twin 
architectures on a cloud-edge. 
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