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Abstract: This paper introduces a Digital Twin-based Deep Reinforcement Learning (DRL) model that can 
be used to suppress chatter and optimize energy consumption in micro-turning within the humanistic 
paradigm of Industry 5.0. An accurate precision lathe machine equipped with vibration, spindle-current 
and temperature sensors and acoustic sensors feeds high-frequency data to a constantly changing digital 
replica that incorporates regenerative cutting-force dynamics, feature-extracting wavelets and Kalman-
state estimation. The twin predicts immediate tool movement, chatter activity, torque variability, and 
thermal loading, allowing a Proximal Policy Optimization (PPO) agent to modify spindle speed and feed 
rate by using a predictive, physically-based control method. The dynamic cycle between the cyber and 
physical enhances growth of chatter in advance before it occurs, stabilizes the torque and chip-thickness 
variation and ensures stability of optimum cutting action. AISI 304 stainless steel experimental results 
show that the amplitude of vibration was reduced by 31 %, the energy efficiency of the spindle was 
increased by 22 %, and surface finishing was improved by 18 % over machining with constant parameters. 
The natural-language layer of interpretability translates twin-DRL decisions into insights in the form of 
operators, and the system aligns with the explainable and collaborative principles of Industry 5.0. The 
suggested model provides a single and dynamic route of intelligent micro-machining with predictive 
stability, minimized power usage, and transparent human-machine interaction. 
Keywords: Deep Reinforcement Learning, Chatter Suppression, PPO Control, Energy Optimization, 
Industry 5.0. 
 
Introduction 
The Digital Twin technology has become one of the key facilitators of intelligent manufacturing, but the 
current implementations are predominantly diagnostic, providing monitoring and forecasting but lacks 
the adaptive control that is necessary to implement machining stability in a real-time. Micro-turning, 
especially, is an acute problem in which regenerative chatter, thermal and torque induced instability 
become critical at a milliseconds time scale and fixed-parameter machining does not work any longer as 
the tool-workpiece interaction changes as a result of material variability or progressive wear. The classic 
controllers are unable to predict the latent feedback associated with the regenerative chatter and the 
resultant increase in vibration, loss of accuracy, and wasteful utilization of energy. Industry 5.0 requires 
one paradigm to be behind a passive observation to participate actively in collaboration, adaptation, and 
human-conscious systems capable of stabilizing complex machining dynamics at the same time, 
maximizing sustainability measurements. 
 
In order to facilitate this change, the manufacturing environment should be able to unite on-going sensing, 
physics-based modeling as well as autonomous learning within a single real-time computational loop. 
Vibration, acoustic emission, spindle load, and thermal information are very rich signals of machining 
stability, but unlike the real-time signals they are very transient and nonlinear, and do not record the 
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occurrence of chatter, or the development of cutting-zone disturbances. A Digital Twin recreating tool 
motion, chip- formation dynamics, stiffness changes across the spindle, and thermal run-off provides the 
desired level of understanding by connecting the current behaviour of the real machine to a predictive 
virtual one. Nevertheless, prophecy does not guarantee stability. It is also required that the system will 
have to continuously make control adjustments that do not violate machining limitations and attempt to 
predict destabilizing conditions before they escalate. 
 
This level of adaptivity can be facilitated using Deep Reinforcement Learning, which requires the quality 
of state representations. The direct training of DRL on sensor signals generates oscillatory or unsafe 
policies. When implemented within a continuously synchronized Digital Twin, the agent will be fed with 
processed, physically meaningful signals and can consider candidate actions within a simulated horizon 
and execute them on the machine. This symbiotic relationship alters the control toward correction 
towards stabilization. The regenerative cutting-force dynamics modeled within the twin enables the 
controller to know how alterations in the spindle speed, or the feed rate will affect the future vibration 
field, torque ripple, and modulation in the chip-thickness. By punishing chatter energy and electrical load 
and rewarding steady and resourceful cutting, the learning agent approaches cutting parameters that 
stabilize and save energy. 
 
An interpretability layer based on human-centered principles makes this system more aligned with 
Industry 5.0, converting the internal changings of both the twin and the DRL policy into real-time 
instructions that can be comprehended by operators without the need of signal-processing or control 
knowledge. Instead of giving numbers, the system will explain the reason a correction is applied, be it the 
increasing chatter frequency, increasing thermal load, or an imbalance in the torque and will also advise 
through the predictive model of the virtual twin of operation suggestions. This helps to bridge the 
cognitive differences between machine intelligence and human decision-making to facilitate safer and 
more transparent and sustainable machining workflows. 
 
This study thus fills a major gap in micro-turning: the lack of an integrated, real-time, learning-enabled 
Digital Twin, which can suppress chatter before it arises, make energy use efficient, and explain system 
behaviour in ways a human can understand. The proposed framework provides the current state of 
machining control by incorporating continuous sensing, regenerative dynamic simulation, Kalman 
estimation, deep reinforcement learning, and natural-language interpretability and translates the 
concepts of Industry 5.0, such as adaptivity, sustainability, and human collaboration, into an 
experimentally validated and practical manufacturing solution. 
 
Methodology 

The proposed framework integrates sensing, physics-based simulation, state estimation, 
reinforcement-learning control, and human-centric interpretability into a single real-time cyber–physical 
loop that remains synchronized with the micro-turning process at millisecond resolution. The machining 
system consists of a precision lathe operating on AISI 304 steel, equipped with triaxial vibration, spindle-
current, temperature, and acoustic sensors sampled at 20 kHz. Raw signals are filtered through cascaded 
IIR stages to suppress environmental noise and power-line harmonics, after which a discrete wavelet 
transform (db4) isolates regenerative chatter bursts, spindle-load fluctuations, and transient torque 
disturbances. These wavelet-derived features form the perceptual input to the Digital Twin, which 
simulates sub-millisecond tool–workpiece interaction using a regenerative cutting-force model governed 
by delay differential dynamics representing chip-thickness regeneration, stiffness variation, and chatter 
energy accumulation. 
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The twin continuously predicts tool displacement, thermal evolution, torque deviation, and stability 
trends for the upcoming cutting window. A Kalman-based state estimator reconciles the simulated 
predictions with filtered sensor signals to correct deviations introduced by material variability, frictional 
nonlinearities, and thermal drift, thereby maintaining synchronization between the physical machine and 
its virtual counterpart. This allows the twin to infer hidden machining states such as regenerative-lag 
magnitude, stiffness degradation, chatter growth rate, and torque ripple amplitude, which cannot be 
directly measured. 

These fused twin states form the input to a Proximal Policy Optimization (PPO) reinforcement-learning 
agent that determines continuous adjustments to spindle speed and feed rate. Instead of acting directly 
on raw signals, the agent interacts with a physically meaningful representation supplied by the twin, 
enabling stable learning even under fluctuating machining conditions. Each proposed action is first 
evaluated inside the twin over a short predictive horizon. If the simulated chatter energy, temperature 
rise, or spindle-current load violates stability limits, the expected reward is decreased before real 
execution, preventing destabilizing parameter jumps. The reward combines penalties for chatter energy 
and electrical load with positive contributions from smooth torque behavior and improved material 
removal rate, driving the agent to learn a stable, low-energy, and productive cutting strategy. Once 
validated, the chosen spindle and feed adjustments are applied to the physical machine with <50 ms 
latency, completing one iteration of the continuous cyber–physical learning cycle. 

A natural-language interpretability layer translates internal states of the twin and DRL decisions into 
actionable operator insights. Instead of presenting complex spectral plots, the system communicates 
context-aware messages such as “Stability margin decreasing—reducing spindle speed by 3% to re-enter 
stable lobe,” allowing transparent human participation. Through this integrated pipeline, sensing, 
simulation, estimation, learning, and interpretation operate as a unified mechanism to proactively 
suppress chatter, minimize power consumption, and maintain operator understanding under the 
principles of Industry 5.0. 

Results and Discussion 

Optimally, the system was experimented to work on a micro-turning system and machined AISI 304 
stainless steel over a set of spindle-speed and feed rates. The Digital Twin was closely synchronized with 
the physical system, and the Kalman estimator eliminated prediction-measurement discrepancies by 
approximately 68% thus sustaining the virtual model through vigorous dynamic transitions of high 
frequencies. Under the machining of the baseline with fixed parameters, the wavelet-domain analysis 
showed that the regenerative chatter peaks were near 1.1 kHz. These peaks were core pointers to 
postponed chip-thickness healing, torque rippling, and vibration increase. The comparison of FFT vibration 
of baseline machines and DTDRL machinery is shown in fig. 1. There are high chatter sidebands visible in 
the baseline spectrum in the 200450 Hz area, and a significant regenerative resonance at around 9501200 
Hz. The amplitudes decrease considerably under DRL control since the agent will automatically adjust 
spindle speed off unstable lobes as estimated by the twin. 
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Figure 1. Vibration FFT spectra under Baseline vs. DT–DRL machining showing reduced chatter peaks and 
suppressed sidebands. 

There is also improvement in time-domain vibration. The machining at the base produced a 
regenerative feedback of about 0.42 mm of maximum to minimum movement. After stabilizing the 
operating point by the PPO agent, the vibration decreased to 0.29 mm, which is a 31 percent decrease. 
The Digital Twin has helped improve on this by anticipating the growth of chatter prior to physical 
occurrence and proactively changing the parameters. Figure 2 shows the comparison of RMS vibration 
with machining pass. 

 

Figure 2. Time-domain RMS vibration amplitude before and after DT–DRL control. 

The reinforcement-learning agent exhibited steady and monotonic evolution of rewards in the course of 
training. The reward functional punished high chatter energy and spindle-load RMS, and caused the agent 
to enter energy-saving and stable operating regimes. Throughout the initial episodes, there were ups and 
downs in the rewarding as a result of the exploration behavior whereas the reward rose gradually as the 
policy was mature. In Figure 3, the cumulative reward trends reflect successful learning and development 
of a stable policy. 
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Figure 3. PPO cumulative reward trend showing stable convergence of the learned control policy. 

There was also increased consumption of energy. Spindle-current RMS was reduced 3.41 A to 2.66 
A (22% reduction) and total energy per component was reduced 21.7%. These were gains made without 
reduction of productivity; there was an increase in the material removal rate by approximately 9 percent. 
The DTDRL controller would choose pairs of spindle-speed and feed-rate that reduced the torque ripple 
as well as avoiding severe thermal spikes. Figure 4 compares the energy consumption in the case of the 
base and the optimized machining showing identical decreases throughout all the conditions in which the 
test was conducted. 

 

Figure 4. Energy consumption comparison: Baseline machining vs. DT–DRL optimized machining. 

Table 1 summarizes the measured improvements across vibration suppression, chatter reduction, energy 
optimization, and surface finish. 

Table 1. Performance Summary of DT–DRL Framework 

Metric Baseline Machining DT–DRL Machining Improvement 

RMS Vibration (mm) 0.42 0.29 31% ↓ 

Chatter Energy (a.u.) 1.00 0.63 37% ↓ 

Spindle-Current RMS (A) 3.41 2.66 22% ↓ 

Total Energy/Component (Wh) 12.4 9.7 21.7% ↓ 

Surface Roughness Ra (µm) 0.78 0.64 18% ↓ 

Material Removal Rate Baseline +9% Increase 
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The interpretability layer of the system also increased the trust of the operators as they could understand 
the cause of every spindle or feed adjustment. Such statements as Stability margin loads less -3% 
slowdown of the spindle provided the human-machine cooperation without any difficulties following the 
principles of Industry 5.0. 

Conclusion 

This paper presented a Digital Twin-based DRL system to suppress chatter and optimize power 
consumption in micro-turning in real-time. Simulation of regenerative cutting, Kalman estimation, PPO-
based continuous control and natural-language interpretability enabled development of a potent system 
that could predict instabilities and control machining conditions proactively. The experimental findings 
revealed that vibration amplitude was reduced by 31 percent, energy consumption was also improved by 
22 percent, and the surface finish was also improved by 18 percent. The close-knit cyber-physical 
connection shows a potential way forward to the next generation machining systems, in line with Industry 
5.0, where autonomous intelligence and human understandability co-exist in harmony. This architecture 
will be further extended to multi-tool environments, federated learning twins and thermal mechanical 
coupling models in future work to provide more predictive machining intelligence. 
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