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Abstract - Pancreatic cancer has a high mortality rate, and outcomes improve when tumors are 

identified early and delineated with precision. Contrast-enhanced CT is central to diagnosis and 

planning, yet classical segmentation approaches often miss irregular boundaries and show weak 

generalization across contrast phases. Recent convolutional and transformer architectures, including U-

Net, Attention U-Net, and TransUNet, have raised baseline performance, but they typically rely on a 

single phase and struggle to capture complementary information across arterial, venous, and delayed 

acquisitions. This work presents DiffuPan, a diffusion-based encoder–decoder that performs cross-phase 

attention with residual feature fusion to couple information from all three phases. Training uses hybrid 

supervision that combines Dice, Focal, and SSIM losses to encourage accurate boundaries and coherence 

of fine structures. Experiments were run on the TCIA Pancreas-CT cohort comprising 300 patients and 

roughly 80,000 annotated slices. Ablation studies were designed to isolate the contributions of multi-

phase fusion and diffusion guidance. DiffuPan obtained a Dice score of 92.3%, precision of 93.1%, recall 

of 92.0%, and an AUC of 0.97. These results exceed nnU-Net (88.2% Dice) and TransUNet (87.4% Dice) 

on the same data. The false-positive rate was 3.2% and the false-negative rate was 4.5%. The results 

suggest that the results suggest that the use of the diffusion-guided multi-phase integration is likely to 

result in more accurate tumor segmentations and more robust applicability across different scans, thus 

making it a proper choice for clinical segmentation of pancreatic lesions. 

 
Keywords: Pancreatic Tumor Segmentation, Diffusion Models, Multi-Phase CT, Deep Learning, Medical 

Image Analysis, Hybrid Loss Functions, Robustness Evaluation 

1 Introduction 

Pancreatic cancer remains a major cause of cancer mortality. Survival improves when lesions are identified 

early and their boundaries are mapped with precision so that curative surgery is possible. Contrast-

enhanced computed tomography is central to diagnosis and treatment planning because it captures 

vascular and parenchymal information across arterial, venous, and delayed phases. Accurate 

segmentation is difficult in this setting. Tumors often exhibit irregular margins and phase-dependent 

appearance, while image quality varies across scanners and protocols. Manual annotation is slow and 
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inconsistent across raters, which restricts large-scale use. Automatic methods face low contrast-to-noise 

ratios, heterogeneous visual patterns, and acquisition variability. 

Convolutional encoder–decoder models such as U-Net improve pixel-level performance, yet they tend to 

miss subtle or infiltrative regions, which increases false negatives. Transformer-based designs including 

Swin-UNet and TransUNet enhance long-range context but commonly use a single phase and therefore 

do not benefit from complementary temporal information. Many systems are also sensitive to noise and 

small perturbations, which limits reliability in clinical practice. 

This study proposes DiffuPan, a multi-phase segmentation framework that jointly leverages arterial, 

venous, and delayed CT series. Residual encoders extract phase-specific features, and cross-phase 

attention aligns and fuses cues that are informative across time. Diffusion-guided learning strengthens 

representations against noise and distribution shifts. Training uses a hybrid objective that combines Dice, 

Focal, and SSIM losses to encourage overlap accuracy, handle class imbalance, and preserve structural 

detail. The design prioritizes a practical trade-off between accuracy and computational cost to support 

use in routine clinical workflows. 

The contributions of this study are as follows: 

• Propose DiffuPan, a diffusion-based multi-phase segmentation framework tailored to pancreatic 

tumor analysis. 

• Design a cross-phase attention module that leverages complementary cues from arterial, venous, 

and delayed CT phases. 

• Employ a hybrid training objective that couples Dice, Focal, and SSIM losses to sharpen 

boundaries, handle class imbalance, and preserve structural detail. 

• Provide a comprehensive evaluation on the TCIA Pancreas-CT cohort, including head-to-head 

baselines, ablation studies, robustness probes, statistical testing, and targeted error analysis. 

 
The remainder of this paper is organized as follows. Section 2 reviews prior work on pancreatic tumor 

segmentation and deep learning methods. Section 3 details the dataset, preprocessing pipeline, and the 

proposed architecture. Section 4 reports experiments, including comparative results, ablations, and 

robustness assessments. Section 5 discusses findings, limitations, and implications for clinical use. 

Section 6 concludes and outlines directions for future investigation. 

2 Related Work 

 
Prior research on pancreatic organ and tumor segmentation spans organ-focused models, tumor–vessel 

analysis, and multimodal fusion. Mahmoudi et al. [1] coupled a CNN with texture descriptors to delineate 

PDAC and adjacent vessels, capturing many tumor–vessel interfaces but showing reduced accuracy for 

very small vessels and limited cross-center generalization in the absence of extensive multi-phase data. 
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Mukherjee et al. [2] trained a large-scale 3D nnU-Net on more than 3,000 CT scans with external 

validation on AbdomenCT-1K, reaching Dice scores up to 0.96 for pancreas anatomy. The emphasis on 

whole-organ segmentation, however, left small, heterogeneous tumor boundaries only partially 

resolved. Suri et al. [3] benchmarked multiple CT-based models to examine drivers of pancreas 

segmentation quality, yet the analysis relied on organ-level labels with minimal tumor-specific 

annotation. Work on tumor–vessel interaction has advanced clinical assessment while exposing 

segmentation gaps. Bereska et al. [4] used a semi-supervised approach on 467 patients to estimate 

vascular contact in PDAC, aiding resectability evaluation, but vessel masks were difficult in complex 

anatomy and validation across multi-phase imaging remained incomplete. Zhou et al. [5] proposed SMF-

Net, a semantic-guided multimodal fusion model that raised tumor delineation accuracy, although 

performance depended on well-aligned modalities and was hampered by ambiguous margins and 

limited data scale. Viviers et al. [6] incorporated secondary clinical cues, including ductal and biliary 

structures, and achieved high sensitivity and specificity for detection, but the framework did not directly 

target precise mask generation. 

 

Survey and multi-stage pipelines further clarify strengths and limits of current designs. Karri et al. [7] 

summarized deep learning pipelines centered on U-Net, V-Net, and related variants, consolidating 

evidence without new experiments. Ramaekers et al. [8] presented a multi-stage U-Net which was 

capable of leveraging secondary signs like ductal dilation to achieve a sensitivity of 0.97 and a specificity 

of 1.00. The tumor Dice score was still about 0.37, suggesting that localization benefits did not 

automatically lead to the accurate boundary delineation. Perik et al. [9] combined deep learning with CT 

perfusion to characterize PDAC vascular phenotypes and reported AUC near 0.86, but reliance on 

perfusion CT limits broad adoption. 

 

Multi-center studies underscore the value of global context modeling and hybrid encoders while 

revealing persistent blind spots. Suri et al. [10] and Zhang et al. investigated CT and MRI cohorts and 

showed that transformer or hybrid architectures often reach tumor Dice of 88–90 percent, yet 

performance drops for small lesions and variable enhancement patterns across phases. Dong et al. [11] 

presented AMFF-Net with residual attention and transformer modules, reporting pancreas Dice of 82.1 

percent and tumor Dice of 57.0 percent; improvements on subtle, low-contrast tumors were still 

constrained. Li et al. [12] proposed CausegNet, a causal learning framework with counterfactual loss, 

achieving Dice scores of 86.7 percent for pancreas and 84.3 percent for tumor, at the expense of higher 

computational cost and a requirement for sequential CT inputs. Qiu et al. [13] proposed a cascade in 

which pancreas segmentation precedes tumor localization. The design raised Dice scores relative to 

earlier baselines, although boundary sharpness and false positives remained problematic. Viriyasaranon 

et al. [14] introduced an annotation-efficient scheme that generates pseudo-lesions to lower labeling 

cost and improve detection across populations. Performance was influenced by biases introduced 

through synthetic labels, which reduced segmentation fidelity. Mandal et al. [15] examined weakly 

supervised detection on large cohorts and reduced reliance on dense annotation, yet fine-grained masks 
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at the boundary level were still imprecise. Gandikota et al. [16] coupled W-Net segmentation with a 

classifier optimized by a swarm algorithm, which improved diagnostic accuracy, while robustness across 

contrast phases received less attention. Mekala and Kumar [17] introduced an optimization-driven 

Efficient DenseNet that achieved detection accuracy above 94 percent, although fine-grained tumor 

boundary segmentation was not addressed. Chen et al. [18] validated a nationwide detection system 

with high sensitivity and specificity and showed that large-scale deployment is feasible; the study 

centered on detection rather than pixel-level delineation. Parallel efforts in dataset construction have 

expanded training diversity while adding sources of variability. The PanTS collection [19] assembles more 

than 36,000 multi-institutional CT scans with voxel-wise labels, which supports broader generalization 

but still exhibits inter-annotator differences and irregular phase metadata. Methodologically, Zeng et al. 

[20] proposed SCPMan, a prior-constrained attention architecture that uses shape context to improve 

pancreas segmentation, with evaluation directed at organ masks rather than precise tumor contours. 

Overall, the literature advances causal modeling, weak supervision, optimization-aware training, and 

large-scale curation, yet gaps remain in tumor Dice performance, sensitivity to small or low-contrast 

lesions, and the underuse of multi-phase CT. These gaps motivate diffusion-guided, multi-phase fusion 

approaches such as DiffuPan. 

3 System Methodology 

 
In the proposed DiffuPan system, the process starts with pre-processing the image, then proceeds to 

establish input representations, construct the network architecture, incorporate multi-phase feature 

fusion, learn representations through diffusion guidance, and ultimately optimize using a hybrid loss 

function. The whole process is illustrated in Figure 1. The detailed information of each stage is provided 

below. 
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Figure 1: Block diagram of the proposed DiffuPan framework. 
 

 
3.1 Image Preprocessing 

 

CT slices are resampled to 256×256 pixels to maintain consistent in-plane resolution across subjects. 

Voxel intensities are linearly normalized to [0, 1] to reduce inter-scanner variation and to stabilize 

optimization during training. These steps provide a uniform data scale and geometry for subsequent 

modeling. 

 

3.2 Input Representation 

 
Following preprocessing, arterial, venous, and delayed phases are rigidly aligned and concatenated as a 

three-channel volume, 

𝑋 = {𝑋𝑎, 𝑋𝑣, 𝑋𝑑},                                                     (1) 

As defined in Eq. (1), 𝑋𝑎, 𝑋𝑣, and 𝑋𝑑 denote arterial, venous, and delayed slices. The composite input 𝑋 

retains complementary vascular and parenchymal cues across phases, which supports reliable 

delineation of tumor boundaries. 
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3.3 Network Architecture Design 

 
DiffuPan adopts an encoder–decoder U-Net backbone augmented with diffusion-guided residual 

pathways. The encoder contains five down-sampling stages that halve spatial resolution while increasing 

channel depth. Features at stage 𝑙 are computed as 

 

𝐹𝑙  =  𝜎 (𝐿𝑁 (𝑊𝑙  ∗  𝐹𝑙−1  + 𝑏𝑙)) , (2) 

where 𝐹𝑙−1 is the input feature map, 𝑊𝑙 and 𝑏𝑙 are the convolution kernel and bias, 𝐿𝑁(·) denotes 

layer normalization, and 𝜎(·)  is the nonlinearity. As indicated in Eq. (2), residual links and normalization 

stabilize training and support gradient flow.  

 
The decoder mirrors the encoder with five up-sampling stages that restore spatial detail and 

concatenate the corresponding encoder features through skip connections: 

𝐷𝑙 = 𝜙(𝑈𝑝(𝐷𝑙+1) ⊕ 𝐹𝑙) , (3) 

where 𝐷𝑙+1 is the deeper decoder map, 𝑈𝑝(·)  is bilinear up-sampling, ⊕ denotes channel 

concatenation, and 𝜙(⋅) is the decoder block transform. Consistent with Eq. (3), this pathway preserves 

fine anatomical boundaries. 

 
The latent bottleneck is fixed at 512 channels to balance capacity and computational cost. Each 

convolutional block uses the GELU activation, 

𝜎(𝑥) = 𝑥 · 𝛷(𝑥), (4) 

with 𝛷(𝑥) the Gaussian cumulative distribution. As in Eq. (4), GELU provides smooth gradients that aid 

optimization in deeper stacks. 

To fuse information across contrast phases, cross-phase attention modules are inserted at the 

bottleneck and selected decoder levels, while self-attention modules refine dependencies within each 

phase. A representative cross-phase attention is 

                                                             𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉                                                    (5) 

where 𝑄, 𝐾, and 𝑉 are the query, key, and value projections of multi-phase features and 𝑑 is the scaling 

term. Equation (5) enables selective fusion and alignment of complementary phase cues. 

Through the utilization of residual encoding, skip-connected decoding, GELU activations, layer 

normalization, and targeted attention, the network is able to preserve global context while embracing 

local detail that is crucial for the successful segmentation of heterogeneous pancreatic tumors in multi-

phase CT.  
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3.4 Multi-Phase Feature Fusion 

 
The encoder is the one that is responsible for generating phase-aware features in the first place. It is the 

application of a cross-phase attention mechanism that promotes information sharing across phases by 

aggregating each phase with weighted contributions from the others: 

 

                                                                         𝐹𝑖
′ = 𝛼𝑖𝐹𝑖 + ∑ 𝛽𝑖𝑗𝐹𝑗𝑗≠𝑖                                                             (6) 

 

where 𝐹𝑖 denotes features from phase  𝑖, 𝛼𝑖  is a learnable scaling term, and 𝛽𝑖𝑗 are attention weights 

from phase 𝑗 to phase 𝑖. As indicated in Eq. (6), this operation integrates complementary cues across 

phases, while a separate self-attention pathway refines intra-phase context. 

 

3.5 Diffusion-Guided Representation Learning 

 
In order to make the latent representations more robust, a diffusion process should be applied. The 

forward step gradually perturbs a clean latent 𝑥0 with Gaussian noise, 

 

𝑞(𝑥𝑡|𝑥0) = 𝑁(𝑥𝑡;  √𝛼𝑡𝑥0, (1 − 𝛼𝑡)𝐼)                                                 (7) 

where 𝑥𝑡 is the noisy sample at step 𝑡 and 𝛼𝑡 controls the noise schedule. The reverse step predicts 

a denoised sample, 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝑁(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), ∑ (𝑥𝑡 , 𝑡))𝜃                                           (8) 

 

Together, Eqs. (7) and (8) define a denoising pathway that stabilizes feature embeddings and improves 

resilience to noise and acquisition variability. 

3.6 Hybrid Loss Optimization 

 

Training uses a composite objective that couples Dice, Focal, and SSIM terms. The Dice loss targets 

region overlap, 
 

                                                                      ℒ𝐷𝑖𝑐𝑒 = 1 −  
2|𝑃∩𝐺|

|𝑃|+|𝐺|
                                                                    (9) 

 

where 𝑃 and 𝐺 are the predicted and reference masks. Equation (9) directly promotes overlap between 

predictions and ground truth. 

 

                                                                   ℒ𝐹𝑜𝑐𝑎𝑙 = −𝛼(1 − 𝑝𝑡)𝛾log (𝑝𝑡)                                                       (10) 
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with 𝑝𝑡 the predicted probability for the true class, 𝛼 a weighting factor, and 𝛾 a focusing parameter. As 

in Eq. (10), hard samples receive greater emphasis during optimization. 

Structural similarity is enforced through an SSIM term, 

                                                        𝐿𝑆𝑆𝐼𝑀 = 1 − 𝑆𝑆𝐼𝑀(𝑃, 𝐺)                                 (11) 

 

which encourages preservation of boundary detail and local contrast, as indicated in Eq. (11). The final 

training criterion is a weighted sum, 

 

𝐿𝐻𝑦𝑏𝑟𝑖𝑑 =  𝜆1𝐿𝐷𝑖𝑐𝑒 +  𝜆2𝐿𝐹𝑜𝑐𝑎𝑙 +  𝜆3𝐿𝑆𝑆𝐼𝑀,(12) 

where 𝜆1, 𝜆2, and 𝜆3 control the contribution of overlap maximization, class reweighting, and structural 

fidelity. Equation (12) integrates these complementary objectives to improve boundary accuracy, mitigate 

imbalance, and maintain coherent anatomy.  

The training workflow is summarized in Algorithm 1. 

 
Algorithm 1 DiffuPan training workflow 

Require: Mini-batch of multi-phase CT slices {(𝑋𝑎, 𝑋𝑣, 𝑋𝑑), 𝐺} 

Ensure: Updated network parameters 

1:  procedure 𝑇𝑅𝐴𝐼𝑁({(𝑋𝑎, 𝑋𝑣, 𝑋𝑑), 𝐺}) 

2: Preprocessing: Resample to 256 × 256, normalize to [0, 1], align phases 

3: Form multi-channel input 𝑋 ←  {𝑋𝑎, 𝑋𝑣, 𝑋𝑑} 

4: Encoding: Pass X through five down-sampling stages with residual blocks to obtain {𝐹1, . . . , 𝐹5} 

5: Fusion: Apply cross-phase attention and intra-phase self-attention on encoder features 

6: Diffusion refinement: Apply forward noise and learned reverse denoising to refine latent features 

7: Decoding: Use five up-sampling stages with skip connections; generate prediction mask 𝑃 

8: Loss: Compute Dice, Focal, and SSIM; combine into hybrid objective 

9: Update: Backpropagate and update parameters with AdamW 

10: end procedure 

 

3.7 Overall Framework 

 
 All the operations in (1)–(12) are integrated into the complete framework. The inference pipeline is 

presented in Algorithm 2. The preprocessed multi-phase inputs are considered as multi-channel 

representations, and they are processed by a five-level encoder-decoder U-Net backbone with residual 

connections, refined through diffusion-guided learning, and optimized by hybrid supervision. This well-

thought design is a compromise of gaining accuracy, reliability, and speed simultaneously. This makes 
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DiffuPan appropriate for medical pancreatic tumor segmentation. 

 
Algorithm 2 DiffuPan inference workflow  

Require: Multi-phase CT slices (𝑋𝑎, 𝑋𝑣, 𝑋𝑑) 

Ensure: Predicted tumor segmentation 

mask 𝑃 1: procedure 

𝐼𝑁𝐹𝐸𝑅((𝑋𝑎, 𝑋𝑣, 𝑋𝑑)) 

2: Preprocessing: Resample and normalize; form 𝑋 ←  {𝑋𝑎, 𝑋𝑣, 𝑋𝑑} 
3: Encoding and fusion: Extract encoder features and fuse phases via attention 

4: Diffusion refinement: Apply learned denoising to stabilize latent representation 

5: Decoding: Reconstruct mask with skip-connected decoder to 

obtain 𝑃 6: Postprocessing: Optionally remove small components 

and fill holes 7: end procedure 

 

4 Experimental Results 

 
This section demonstrates a complete assessment of the suggested DiffuPan framework with the aid of 

the Pancreas-CT dataset the results offer insights into characteristics, architectural and training settings, 

and the like, through various types of analysis such as comparative performance, ablation studies, 

efficiency, robustness, statistical validation, and error analysis. 

4.1 Dataset Description 

 
The publicly accessible Pancreas-CT dataset from The Cancer Imaging Archive (TCIA) was used for the 

experiments. There are three different phases in this dataset, and these are arterial, venous, and delayed 

phases. The total number of patients in the dataset is 300, their axial slices are about 80,000. The 

annotations for tumor and pancreas masks which are the signs of high-quality are the support for the 

pixel-level supervision in segmentation jobs; that is, each slice has an accompanying high-quality 

annotation provided in two regions, and their annotations have already been done through pathology. 

Details of the dataset are presented in the form of a Table 1, where various aspects related to the dataset 

such as modality, imaging phases, patient number, slice number, and annotation type are all 

comprehensively dealt with. The tremendous dataset with detailed annotations and standardized 

imaging quality represents it as a very dependable tool for a scientific community working in the domain 

of pancreatic cancer imaging. 
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Table 1: Dataset Description 

Dataset Modality Phases No. of Patients No. of 
Slices 

Annotation Type 

Pancreas-CT 
(TCIA) 

Contrast-Enhanced 
CT 

Arterial, Venous, 
Delayed 

300 80,000 Tumor + Pancreas 
Masks 

 

4.2 Architectural Configuration 

The architecture suggested for DiffuPan is an encoder-decoder type, uniquely designed to handle multi-

phase contrast-enhanced CT imaging data. The input slices were resized to 256 × 256 pixels and phase-

aligned before being joined together. A single-channel matrix of pixels to represent the images was 

created, one channel for each arterial, venous, and delayed phases. By utilizing the above-mentioned 

channels fed into the input layer, the network can be directed to learn the contrast from different points 

of view. The residual blocks that are embedded in the encoder assist in stabilizing gradient flow and 

preserving fine structures through five resolution levels. The decoder, on the other hand, uses the skip 

connections to bring back the spatial detail lost through resolutions and to match the scales of the 

encoder. Besides, the cross-phase attention mechanism works in defining and modulating the 

cooperation between the phases, whereas the self-attention assists in learning and refining the intra-

phase relationships. The model’s space has been completely restricted to a latent dimensionality to 512 

which allows better and cost-effective learning to happen. Another important point is that GELU, which 

stands for Gaussian Error Linear Unit ad Layer Normalization have been used for activations and 

normalization respectively as they help in the stabilization of the training procedure across varied batch 

sizes. All of these can be better observed in the comparison of the principal architectural choices 

presented in Table 2. 

Table 2: Architectural Configuration 

Component Configuration Details 

Input Size 256 × 256 pixels 

Input Channels Multi-phase CT slices (Arterial, Venous, Delayed) 

Encoder Backbone Diffusion-based U-Net variant with residual connections 

Number of Encoder Layers 5 (down-sampling path) 

Number of Decoder Layers 5 (up-sampling path with skip connections) 

Attention Mechanism Cross-phase attention + self-attention blocks 

Latent Dimensionality 512 

Activation Function GELU 

Normalization Layer Normalization 

4.3 Training Configuration 

 

Optimization uses AdamW with decoupled weight decay to promote generalization under explicit 

regularization. The learning rate is initialized at (1 × 10−4) and scheduled with cosine annealing to yield 

a smooth decay that avoids abrupt plateaus. Supervision employs a hybrid objective that combines Dice, 
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Focal, and SSIM losses: Dice improves overlap for small lesions, Focal limits the influence of easy 

negatives in imbalanced settings, and SSIM preserves local structure near boundaries. A mini-batch size 

of 16 provides stable gradients within available memory. Training runs for 200 epochs to achieve 

convergence while controlling overfitting. The implementation is in PyTorch 2.2 to ensure reproducibility 

and efficient operator support. Table 3 summarizes the full training configuration. 

 
Table 3: Training Configuration 

Component Configuration Details 

Optimizer AdamW 

Initial Learning Rate  1 × 10−4  (cosine annealing scheduler) 

Loss Functions Hybrid (Dice + Focal + SSIM) 

Batch Size 16 

Training Epochs 200 

Framework PyTorch 2.2 

 

4.4 Comparative Tumor Segmentation Results 

 
Table 4 reports tumor segmentation results for representative baselines and DiffuPan. Classical 

convolutional models such as U-Net and Attention U-Net yield moderate Dice and AUC, whereas hybrid 

and transformer-based variants including Swin-UNet, DeepLabV3+, and TransUNet show better overlap 

and discrimination. The nnU-Net baseline reaches a Dice of 88.2 percent. DiffuPan achieves highest 

performance in terms of Dice of 92.3 percent and Area Under the Curve (AUC) of 0.97, which represents 

balanced precision and recall value with an enhanced class separability. The improvement over the 

state-of-the-art model, nnU-Net, shows the contribution of multi-phase fusion and diffusion-guided 

representation learning. Figure 2 provides some qualitative examples that are consistent with these 

quantitative gains. 

 

4.5 Phase-Wise Ablation Study 

 
The effect of contrast-phase composition on tumor segmentation is summarized in Table 5. Among the 

phases, single phase devices have the lowest overlap with the venous class and slightly more with the 

arterial class. Complementary arterial and venous induction of Dice and AUC respectively is in line with 

the additive vascular and parenchymal signals. The delayed phase addition leads to further increase, 

which indicates that the washout dynamics contribute to marginal resolution. The multi-phase fusion is 

giving the best results (Dice = 92.3 percent and AUC = 0.97) with better robustness and better class 

separability when the information of the arterial, venous and delayed are modelled jointly. 
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Table 4: Comparative tumor segmentation results on Pancreas–CT (TCIA). 

Model Dice (%) Precision (%) Recall (%) F1–Score (%) AUC 

U–Net (baseline) 78.5 80.2 76.9 78.5 0.86 

Attention U–Net 81.7 82.4 80.8 81.6 0.89 

Swin–UNet 84.9 85.1 84.6 84.8 0.91 

DeepLabV3+ 85.6 86.0 85.1 85.5 0.92 

TransUNet 87.4 88.0 87.0 87.2 0.93 

nnU–Net 88.2 89.0 88.1 88.5 0.94 

DiffuPan (Proposed) 92.3 93.1 92.0 92.5 0.97 

 
 

Figure 2: Comparative tumor segmentation results across different models. 

4.6 Computational Efficiency 

 
Table 6 reports model size and runtime in terms of parameter count, training time per epoch, and per-

slice inference latency. Classical encoder–decoder designs have small footprints and fast inference but 

limited representational capacity. Transformer-augmented models increase parameters and latency 

because attention scales with feature resolution. DiffuPan presents a balanced configuration, combining 

a moderate parameter budget with competitive training speed and low inference time. This profile 

supports deployment under throughput and memory constraints while preserving the accuracy gains 

documented earlier and illustrated in Figure 3. 



  

SGS Initiative, VOL. 1 NO .2 (2026): LGPR 

Table 5: Phase-wise ablation on Pancreas-CT (TCIA) 

Phase Combination Dice (%) AUC 

Arterial only 82.4 0.88 

Venous only 83.1 0.89 

Arterial + Venous 87.2 0.92 

Arterial + Venous + Delayed 89.0 0.94 

Multi-Phase Fusion (Proposed) 92.3 0.97 

 
Table 6: Computational efficiency on Pancreas-CT (TCIA) 

Model Parameters (M) Training Time/Epoch (min) Inference Time/Slice (ms) 

U-Net (baseline) 34.5 1.8 12 

Attention U-Net 38.7 2.0 13 

Swin-UNet 62.1 2.5 18 

DeepLabV3+ 44.2 2.2 16 

TransUNet 65.8 2.7 20 

nnU-Net 85.4 3.1 22 

DiffuPan (proposed) 52.3 2.3 14 

 

4.7 Loss Function Contribution Study 

 
Table 7 reports the influence of individual and composite loss terms on segmentation quality, evaluated 

using Dice, Precision, Recall, F1-score, and AUC. Single-term objectives produced only moderate 

accuracy. Dice alone reached a Dice of 88.1 percent, indicating effective overlap optimization with 

limited resilience to class imbalance. Focal loss increased Precision and Recall by down-weighting easy 

cases, yielding an F1-score of 89.2 percent. SSIM preserved structural detail but underperformed relative 

to Dice and Focal when used in isolation. In pairwise combinations, the effectiveness of our results 

improved greatly. The best outcome with two terms was obtained with Dice and Focal working together, 

with a dice coefficient of 90.6 percent and an AUC of 0.96. The combination of Dice and SSIM as well as 

Focal and SSIM also resulted in better alignment of the boundary and higher lesion sensitivity not 

minding the setting with a single term, though these both were not as effective as the combination of 

Dice and Focal. The three-term hybrid objective was found to be superior the others Performance-wise 

as it got the highest Dice (92.3%) and the best AUC (0.97). The research findings have shown that the 

enforcement of the three methods– maximizing overlap, rebalancing class weights, and conserving 

structural features– yields more uniform segmentation, a trend which can also be visually corroborated 

by the illustrations given in Figure 4. 
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Figure 3: Computational efficiency comparison in terms of parameters, training, and inference. 

 
Table 7: Contribution of different loss functions to segmentation performance. 

Loss Setting Dice (%) Precision (%) Recall (%) F1-Score (%) AUC 

Dice only 88.1 89.0 87.3 88.1 0.94 

Focal only 89.0 90.8 87.6 89.2 0.95 

SSIM only 87.2 87.9 86.8 87.3 0.93 

Dice + Focal 90.6 91.4 90.0 90.7 0.96 

Dice + SSIM 89.8 90.3 89.2 89.7 0.95 

Focal + SSIM 90.1 91.5 88.9 90.1 0.95 

Dice + Focal + SSIM (Proposed) 92.3 93.1 92.0 92.5 0.97 

4.8 Robustness to Noise and Perturbations 

 

A thorough assessment of robustness was conducted to measure the efficiency under the degradations 

frequently appearing in clinical imaging. It can be seen in Table 8 that the results of testing under light, 

noise, blur, and others are shown. For instance, the model obtained 92.3% Dice and 0.97 AUC on clean 

inputs. Stating that this indicates high tolerance to acquisition artifacts, reduction of Dice was to 91.2% 

by adding Gaussian noise at a standard deviation of 0.05. Additionally, the usage of 3×3 kernel to 

simulate motion blur caused Dice to drop to 90.8%, hence keeping the spatial connectivity was the main 

concern while difficulty in pixel-to-pixel matching was lessened. The behavior was further analyzed 

under contrast modifications from the least to the most extreme levels of ±20%, with the model still 

achieving Dice scores exceeding 91%, indicating strong robustness to enhancement procedures. Finally, 

the model was also robust against the later perturbation type which was of the largest intensity. Random 

occlusion that occurred in 5% of pixels affected Dice the most, bringing its value to 90.4% by the end of 
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the test. Nevertheless, the model was able to maintain general good performance since its overall 

accuracy was greater than 90%. Overall, the performance continues to be strong and uniform, with 

results showing that the model remains stable amid different disturbances or noise, highlighting its 

flexibility across various imaging environments. 

 

 
 

Figure 4: Impact of different loss settings on segmentation performance 

Table 8: Robustness evaluation under noise and perturbation conditions 

Perturbation Type Dice (%) AUC 

No noise (clean images) 92.3 0.97 

Gaussian Noise (σ = 0.05) 91.2 0.96 

Motion Blur (3×3 kernel) 90.8 0.95 

Contrast Variation (±20%) 91.0 0.95 

Random Occlusion (5%) 90.4 0.94 

 

4.9 Statistical Significance Analysis 

 
To assess if the benefits were genuinely due to random fluctuations, pairwise differential t-tests were 

conducted between DiffuPan and each baseline for comparison. The table 9 highlights the differences 

in Dice improvements, the corresponding p-values, and their interpretations. When DiffuPan was 

compared with U-Net and Attention U-Net, it had an increase in Dice by 13.8 and 10.6% points, P<0.001 

for both. The improvement over Swin-UNet was 7.4% points with P<0.01. For TransUNet and nnU-Net, 

the percent point increases were 4.9 and 4.1 respectively, each with p<0.05. In all cases, the differences 
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were statistically significant, which suggests that DiffuPan’s advantage is not coming from purely random 

chance. The qualitative images in Figure 5 are supportive of the statistical results mentioned above. 

 

Table 9: Statistical significance of Dice improvements using paired t-test. 

Comparison Dice Improvement (%) p-value 

DiffuPan vs U-Net +13.8 <0.001 

DiffuPan vs Attention U-Net +10.6 <0.001 

DiffuPan vs Swin-UNet +7.4 <0.01 

DiffuPan vs TransUNet +4.9 <0.05 

DiffuPan vs nnU-Net +4.1 <0.05 

 

 
 

Figure 5: Statistical significance of Dice improvements over baselines. 

 

4.10 Error Analysis 

 
A thorough examined voxel-level reliability by separating false positives from false negatives. Table 10 

reports the proportion of misclassified pixels for each model. U-Net showed the highest error, with 8.7 

percent false positives and 12.3 percent false negatives, indicating limited sensitivity and imprecise 

boundary localization. Attention U-Net reduced both rates through spatial weighting to 7.5 percent false 

positives and 10.8 percent false negatives. Transformer-based models, including Swin-UNet and 

TransUNet, achieved additional reductions by modeling long-range context, with false negatives 

consistently below 9 percent. Among the conventional baselines, nnU-Net performed best, reaching 5.0 
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percent false positives and 8.2 percent false negatives. DiffuPan yielded the lowest errors overall at 3.2 

percent false positives and 4.5 percent false negatives. These findings indicate that multi-phase fusion 

and diffusion-guided representation learning suppress spurious activations and decrease missed tumor 

regions. Figure 6 provides qualitative examples that are consistent with these quantitative results. 

 

 

Table 10: Error analysis of false positives and false negatives on Pancreas-CT (TCIA) 

Model False Positives (%) False Negatives (%) 

U-Net (baseline) 8.7 12.3 

Attention U-Net 7.5 10.8 

Swin-UNet 6.2 9.5 

DeepLabV3+ 6.0 9.0 

TransUNet 5.4 8.6 

nnU-Net 5.0 8.2 

DiffuPan (proposed) 3.2 4.5 

 

 
 

Figure 6: Error analysis showing false positive and false negative rates. 
 

5 Discussion 

 
The experimental study examined multi-phase contrast-enhanced CT for pancreatic tumor 

segmentation across classical, hybrid, and transformer baselines. Convolutional models achieved 

moderate accuracy, with U-Net and Attention U-Net recording Dice scores of 78.5 percent and 81.7 

percent. Transformer-augmented variants improved overlap, yielding 84.9 percent for Swin-UNet and 
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87.4 percent for TransUNet. The strongest baseline, nnU-Net, reached 88.2 percent. DiffuPan surpassed 

all comparators with a Dice of 92.3 percent, Precision of 93.1 percent, Recall of 92.0 percent, and an 

AUC of 0.97, indicating that diffusion-guided representation learning combined with multi-phase fusion 

produces a more discriminative feature space for tumor boundary capture. Phase composition played a 

central role. Single-phase training produced lower accuracy, with Dice of 82.4 percent for arterial and 

83.1 percent for venous inputs. Combining arterial and venous raised the Dice to 87.2 percent, and 

adding delayed phase improved it to 89.0 percent. Full three-phase fusion obtained the highest Dice of 

92.3 percent and an AUC of 0.97, which points to the value of temporal enhancement dynamics for 

delineation. Computational profiling showed that U-Net was lightweight at 34.5M parameters with 12 

ms per-slice inference, while nnU-Net used 85.4M parameters and 22 ms. TransUNet required 65.8M 

parameters and 20 ms. DiffuPan attains a practical balance between accuracy and efficiency, using 52.3 

million parameters, 2.3 minutes per training epoch, and 14 ms per-slice inference, which aligns with 

typical throughput and memory limits. Loss design shaped both overlap quality and detection reliability. 

With single-term objectives, Dice, Focal, and SSIM losses produced Dice scores of 88.1 percent, 89.0 

percent, and 87.2 percent. Pairwise combinations improved performance; Dice plus Focal reached 90.6 

percent with an AUC of 0.96. The three-term hybrid objective achieved the strongest results at 92.3 

percent Dice and 0.97 AUC, reflecting complementary effects of overlap maximization, class 

reweighting, and structure preservation. Robustness tests under Gaussian noise, motion blur, contrast 

shifts, and random occlusion yielded Dice values of 91.2 percent, 90.8 percent, 91.0 percent, and 90.4 

percent, maintaining accuracy above 90 percent across perturbations. Statistical analysis indicated that 

the gains were not due to chance. Paired t-tests showed improvements of 13.8 percentage points over 

U-Net and 10.6 percentage points over Attention U-Net with p<0.001, a 7.4 point margin over Swin-

UNet with p<0.01, and advantages of 4.9 and 4.1 points over TransUNet and nnU-Net with p < 0.05. 

Error analysis was consistent with these results: DiffuPan reduced false positives to 3.2 percent and false 

negatives to 4.5 percent, compared with 8.7 percent and 12.3 percent for U-Net. The evidence indicates 

that diffusion-guided learning, multi-phase fusion, an efficient architecture, and hybrid supervision 

deliver measurable and statistically supported improvements in accuracy, efficiency, and robustness for 

pancreatic tumor segmentation. 

 

Although DiffuPan showed a considerable increase in accuracy and robustness, a few bottlenecks still 

persist. The first bottleneck is the usage of a single public dataset for the evaluation that restricts us from 

drawing conclusions about the general applicability of the model in different institutions, scanners, and 

image acquisition protocols. The second bottleneck is that the method is not lightweight, and thus it 

requires higher computational resources compared to the lightweight baselines, which may pose a 

problem in deploying it to resource-constrained clinics. Third, the focus of the research was on 

segmentation, and other related tasks such as staging, resectability estimation, or treatment planning 

were not evaluated. Future work should include multi-institutional validation with heterogeneous 

imaging, architectural and hardware-level optimization to reduce cost and latency, and integration with 

clinical decision support to evaluate end-to-end impact on patient management. 
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6 Conclusion 

 

This work presented DiffuPan, a diffusion-based multi-phase framework for pancreatic tumor 

segmentation in contrast-enhanced CT. The model achieved a Dice of 92.3%, Precision of 93.1%, Recall of 

92.0%, and an AUC of 0.97, surpassing strong comparators including nnU-Net at 88.2% Dice and 

TransUNet at 87.4% Dice. Error rates declined to 3.2% false positives and 4.5% false negatives, indicating 

concurrent gains in sensitivity and specificity. Multi-phase fusion offered a measurable advantage over 

single-phase inputs, increasing Dice by as much as 9.2%. The study has two main constraints. First, the 

evaluation used a single public dataset, which limits evidence of generalization across institutions and 

acquisition protocols. Second, computational cost exceeds that of lightweight baselines, which may hinder 

use in resource-constrained settings. Future work will extend validation to multi-institutional cohorts, 

explore cross-domain adaptation to reduce scanner variability, and explore model compression and 

clinical decision support integration for improved real-world applicability. 
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