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Abstract - Pancreatic cancer has a high mortality rate, and outcomes improve when tumors are
identified early and delineated with precision. Contrast-enhanced CT is central to diagnosis and
planning, yet classical segmentation approaches often miss irregular boundaries and show weak
generalization across contrast phases. Recent convolutional and transformer architectures, including U-
Net, Attention U-Net, and TransUNet, have raised baseline performance, but they typically rely on a
single phase and struggle to capture complementary information across arterial, venous, and delayed
acquisitions. This work presents DiffuPan, a diffusion-based encoder—decoder that performs cross-phase
attention with residual feature fusion to couple information from all three phases. Training uses hybrid
supervision that combines Dice, Focal, and SSIM losses to encourage accurate boundaries and coherence
of fine structures. Experiments were run on the TCIA Pancreas-CT cohort comprising 300 patients and
roughly 80,000 annotated slices. Ablation studies were designed to isolate the contributions of multi-
phase fusion and diffusion guidance. DiffuPan obtained a Dice score of 92.3%, precision of 93.1%, recall
of 92.0%, and an AUC of 0.97. These results exceed nnU-Net (88.2% Dice) and TransUNet (87.4% Dice)
on the same data. The false-positive rate was 3.2% and the false-negative rate was 4.5%. The results
suggest that the results suggest that the use of the diffusion-guided multi-phase integration is likely to
result in more accurate tumor segmentations and more robust applicability across different scans, thus

making it a proper choice for clinical segmentation of pancreatic lesions.

Keywords: Pancreatic Tumor Segmentation, Diffusion Models, Multi-Phase CT, Deep Learning, Medical

Image Analysis, Hybrid Loss Functions, Robustness Evaluation

1 Introduction

Pancreatic cancer remains a major cause of cancer mortality. Survival improves when lesions are identified
early and their boundaries are mapped with precision so that curative surgery is possible. Contrast-
enhanced computed tomography is central to diagnosis and treatment planning because it captures
vascular and parenchymal information across arterial, venous, and delayed phases. Accurate
segmentation is difficult in this setting. Tumors often exhibit irregular margins and phase-dependent
appearance, while image quality varies across scanners and protocols. Manual annotation is slow and
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inconsistent across raters, which restricts large-scale use. Automatic methods face low contrast-to-noise
ratios, heterogeneous visual patterns, and acquisition variability.

Convolutional encoder—decoder models such as U-Net improve pixel-level performance, yet they tend to
miss subtle or infiltrative regions, which increases false negatives. Transformer-based designs including
Swin-UNet and TransUNet enhance long-range context but commonly use a single phase and therefore
do not benefit from complementary temporal information. Many systems are also sensitive to noise and
small perturbations, which limits reliability in clinical practice.

This study proposes DiffuPan, a multi-phase segmentation framework that jointly leverages arterial,
venous, and delayed CT series. Residual encoders extract phase-specific features, and cross-phase
attention aligns and fuses cues that are informative across time. Diffusion-guided learning strengthens
representations against noise and distribution shifts. Training uses a hybrid objective that combines Dice,
Focal, and SSIM losses to encourage overlap accuracy, handle class imbalance, and preserve structural
detail. The design prioritizes a practical trade-off between accuracy and computational cost to support
use in routine clinical workflows.

The contributions of this study are as follows:

e Propose DiffuPan, a diffusion-based multi-phase segmentation framework tailored to pancreatic
tumor analysis.

e Design a cross-phase attention module that leverages complementary cues from arterial, venous,
and delayed CT phases.

e Employ a hybrid training objective that couples Dice, Focal, and SSIM losses to sharpen
boundaries, handle class imbalance, and preserve structural detail.

e Provide a comprehensive evaluation on the TCIA Pancreas-CT cohort, including head-to-head
baselines, ablation studies, robustness probes, statistical testing, and targeted error analysis.

The remainder of this paper is organized as follows. Section 2 reviews prior work on pancreatic tumor
segmentation and deep learning methods. Section 3 details the dataset, preprocessing pipeline, and the
proposed architecture. Section 4 reports experiments, including comparative results, ablations, and
robustness assessments. Section 5 discusses findings, limitations, and implications for clinical use.

Section 6 concludes and outlines directions for future investigation.

2 Related Work

Prior research on pancreatic organ and tumor segmentation spans organ-focused models, tumor—vessel
analysis, and multimodal fusion. Mahmoudi et al. [1] coupled a CNN with texture descriptors to delineate
PDAC and adjacent vessels, capturing many tumor—vessel interfaces but showing reduced accuracy for

very small vessels and limited cross-center generalization in the absence of extensive multi-phase data.
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Mukherjee et al. [2] trained a large-scale 3D nnU-Net on more than 3,000 CT scans with external
validation on AbdomenCT-1K, reaching Dice scores up to 0.96 for pancreas anatomy. The emphasis on
whole-organ segmentation, however, left small, heterogeneous tumor boundaries only partially
resolved. Suri et al. [3] benchmarked multiple CT-based models to examine drivers of pancreas
segmentation quality, yet the analysis relied on organ-level labels with minimal tumor-specific
annotation. Work on tumor—vessel interaction has advanced clinical assessment while exposing
segmentation gaps. Bereska et al. [4] used a semi-supervised approach on 467 patients to estimate
vascular contact in PDAC, aiding resectability evaluation, but vessel masks were difficult in complex
anatomy and validation across multi-phase imaging remained incomplete. Zhou et al. [5] proposed SMF-
Net, a semantic-guided multimodal fusion model that raised tumor delineation accuracy, although
performance depended on well-aligned modalities and was hampered by ambiguous margins and
limited data scale. Viviers et al. [6] incorporated secondary clinical cues, including ductal and biliary
structures, and achieved high sensitivity and specificity for detection, but the framework did not directly

target precise mask generation.

Survey and multi-stage pipelines further clarify strengths and limits of current designs. Karri et al. [7]
summarized deep learning pipelines centered on U-Net, V-Net, and related variants, consolidating
evidence without new experiments. Ramaekers et al. [8] presented a multi-stage U-Net which was
capable of leveraging secondary signs like ductal dilation to achieve a sensitivity of 0.97 and a specificity
of 1.00. The tumor Dice score was still about 0.37, suggesting that localization benefits did not
automatically lead to the accurate boundary delineation. Perik et al. [9] combined deep learning with CT
perfusion to characterize PDAC vascular phenotypes and reported AUC near 0.86, but reliance on

perfusion CT limits broad adoption.

Multi-center studies underscore the value of global context modeling and hybrid encoders while
revealing persistent blind spots. Suri et al. [10] and Zhang et al. investigated CT and MRI cohorts and
showed that transformer or hybrid architectures often reach tumor Dice of 88—90 percent, yet
performance drops for small lesions and variable enhancement patterns across phases. Dong et al. [11]
presented AMFF-Net with residual attention and transformer modules, reporting pancreas Dice of 82.1
percent and tumor Dice of 57.0 percent; improvements on subtle, low-contrast tumors were still
constrained. Li et al. [12] proposed CausegNet, a causal learning framework with counterfactual loss,
achieving Dice scores of 86.7 percent for pancreas and 84.3 percent for tumor, at the expense of higher
computational cost and a requirement for sequential CT inputs. Qiu et al. [13] proposed a cascade in
which pancreas segmentation precedes tumor localization. The design raised Dice scores relative to
earlier baselines, although boundary sharpness and false positives remained problematic. Viriyasaranon
et al. [14] introduced an annotation-efficient scheme that generates pseudo-lesions to lower labeling
cost and improve detection across populations. Performance was influenced by biases introduced
through synthetic labels, which reduced segmentation fidelity. Mandal et al. [15] examined weakly

supervised detection on large cohorts and reduced reliance on dense annotation, yet fine-grained masks
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at the boundary level were still imprecise. Gandikota et al. [16] coupled W-Net segmentation with a
classifier optimized by a swarm algorithm, which improved diagnostic accuracy, while robustness across
contrast phases received less attention. Mekala and Kumar [17] introduced an optimization-driven
Efficient DenseNet that achieved detection accuracy above 94 percent, although fine-grained tumor
boundary segmentation was not addressed. Chen et al. [18] validated a nationwide detection system
with high sensitivity and specificity and showed that large-scale deployment is feasible; the study
centered on detection rather than pixel-level delineation. Parallel efforts in dataset construction have
expanded training diversity while adding sources of variability. The PanTS collection [19] assembles more
than 36,000 multi-institutional CT scans with voxel-wise labels, which supports broader generalization
but still exhibits inter-annotator differences and irregular phase metadata. Methodologically, Zeng et al.
[20] proposed SCPMan, a prior-constrained attention architecture that uses shape context to improve
pancreas segmentation, with evaluation directed at organ masks rather than precise tumor contours.
Overall, the literature advances causal modeling, weak supervision, optimization-aware training, and
large-scale curation, yet gaps remain in tumor Dice performance, sensitivity to small or low-contrast
lesions, and the underuse of multi-phase CT. These gaps motivate diffusion-guided, multi-phase fusion
approaches such as DiffuPan.

3 System Methodology

In the proposed DiffuPan system, the process starts with pre-processing the image, then proceeds to
establish input representations, construct the network architecture, incorporate multi-phase feature
fusion, learn representations through diffusion guidance, and ultimately optimize using a hybrid loss
function. The whole process is illustrated in Figure 1. The detailed information of each stage is provided

below.
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Figure 1: Block diagram of the proposed DiffuPan framework.

3.1 Image Preprocessing

CT slices are resampled to 256x256 pixels to maintain consistent in-plane resolution across subjects.
Voxel intensities are linearly normalized to [0, 1] to reduce inter-scanner variation and to stabilize
optimization during training. These steps provide a uniform data scale and geometry for subsequent
modeling.

3.2 Input Representation

Following preprocessing, arterial, venous, and delayed phases are rigidly aligned and concatenated as a
three-channel volume,

X = {Xa'Xv' Xd}' (1)
As defined in Eq. (1), X, X,,, and X; denote arterial, venous, and delayed slices. The composite input X

retains complementary vascular and parenchymal cues across phases, which supports reliable
delineation of tumor boundaries.
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3.3 Network Architecture Design

DiffuPan adopts an encoder—decoder U-Net backbone augmented with diffusion-guided residual
pathways. The encoder contains five down-sampling stages that halve spatial resolution while increasing
channel depth. Features at stage [ are computed as

Fp = o0(NW,; x Fi_1 + b)), (2)

where F;_ is the input feature map, W, and b; are the convolution kernel and bias, LN(-) denotes
layer normalization, and o (+) is the nonlinearity. As indicated in Eq. (2), residual links and normalization
stabilize training and support gradient flow.

The decoder mirrors the encoder with five up-sampling stages that restore spatial detail and

concatenate the corresponding encoder features through skip connections:
Dy = ¢pUp(Dy41) D F1), (3)

where D;,; is the deeper decoder map, Up(:) is bilinear up-sampling, @ denotes channel
concatenation, and ¢ (+) is the decoder block transform. Consistent with Eq. (3), this pathway preserves
fine anatomical boundaries.

The latent bottleneck is fixed at 512 channels to balance capacity and computational cost. Each

convolutional block uses the GELU activation,
o(x) = x - ®(x), (4)

with @(x) the Gaussian cumulative distribution. As in Eq. (4), GELU provides smooth gradients that aid
optimization in deeper stacks.

To fuse information across contrast phases, cross-phase attention modules are inserted at the
bottleneck and selected decoder levels, while self-attention modules refine dependencies within each

phase. A representative cross-phase attention is

Attn(Q,K,V) = Softmax (QT’;T) % (5)

where Q, K, and V are the query, key, and value projections of multi-phase features and d is the scaling
term. Equation (5) enables selective fusion and alignment of complementary phase cues.

Through the utilization of residual encoding, skip-connected decoding, GELU activations, layer
normalization, and targeted attention, the network is able to preserve global context while embracing
local detail that is crucial for the successful segmentation of heterogeneous pancreatic tumors in multi-
phase CT.
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3.4 Multi-Phase Feature Fusion

The encoder is the one that is responsible for generating phase-aware features in the first place. It is the
application of a cross-phase attention mechanism that promotes information sharing across phases by

aggregating each phase with weighted contributions from the others:
F{ = a;F; + X2 BijF (6)

where F; denotes features from phase i, a; is a learnable scaling term, and §;; are attention weights
from phase j to phase i. As indicated in Eq. (6), this operation integrates complementary cues across
phases, while a separate self-attention pathway refines intra-phase context.

3.5 Diffusion-Guided Representation Learning

In order to make the latent representations more robust, a diffusion process should be applied. The
forward step gradually perturbs a clean latent x, with Gaussian noise,

q(x¢|xo) = N(xt; \/a_txo’ 1- at)l) (7)

where x; is the noisy sample at step t and a; controls the noise schedule. The reverse step predicts
a denoised sample,

Po(Xe—11xt) = N(xp—1; g (x4, t), Xg(x¢, t)) (8)

Together, Eqgs. (7) and (8) define a denoising pathway that stabilizes feature embeddings and improves
resilience to noise and acquisition variability.

3.6 Hybrid Loss Optimization
Training uses a composite objective that couples Dice, Focal, and SSIM terms. The Dice loss targets
region overlap,

2|PNG|
IP1+G]

Lpice =1 = (9)

where P and G are the predicted and reference masks. Equation (9) directly promotes overlap between
predictions and ground truth.

Lrocal = —a(l- pt)ylog (pe) (10)
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with p; the predicted probability for the true class, a a weighting factor, and y a focusing parameter. As

in Eq. (10), hard samples receive greater emphasis during optimization.
Structural similarity is enforced through an SSIM term,

which encourages preservation of boundary detail and local contrast, as indicated in Eq. (11). The final

training criterion is a weighted sum,

LHybrid = A1LDice + A2LFocal + A3LSSIM,(12)

where 14, 1,, and A3 control the contribution of overlap maximization, class reweighting, and structural
fidelity. Equation (12) integrates these complementary objectives to improve boundary accuracy, mitigate
imbalance, and maintain coherent anatomy.

The training workflow is summarized in Algorithm 1.

Algorithm 1 DiffuPan training workflow

Require: Mini-batch of multi-phase CT slices {(X g4, X, X4), G}
Ensure: Updated network parameters

1: procedure TRAIN ({(X g4, Xp, Xq),G})
2: Preprocessing: Resample to 256 x 256, normalize to [0, 1], align phases
3: Form multi-channel input X « {X,, X, X4}
4. Encoding: Pass X through five down-sampling stages with residual blocks to obtain {F}, ..., F5}
5: Fusion: Apply cross-phase attention and intra-phase self-attention on encoder features
6: Diffusion refinement: Apply forward noise and learned reverse denoising to refine latent features
7: Decoding: Use five up-sampling stages with skip connections; generate prediction mask P
8: Loss: Compute Dice, Focal, and SSIM; combine into hybrid objective
9: Update: Backpropagate and update parameters with Adamw
10: end procedure

3.7 Overall Framework

All the operations in (1)—(12) are integrated into the complete framework. The inference pipeline is
presented in Algorithm 2. The preprocessed multi-phase inputs are considered as multi-channel
representations, and they are processed by a five-level encoder-decoder U-Net backbone with residual
connections, refined through diffusion-guided learning, and optimized by hybrid supervision. This well-
thought design is a compromise of gaining accuracy, reliability, and speed simultaneously. This makes
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DiffuPan appropriate for medical pancreatic tumor segmentation.

Algorithm 2 DiffuPan inference workflow

Require: Multi-phase CT slices (X4, Xy, X4)
Ensure: Predicted tumor segmentation
mask P 1: procedure

INFER((X 4, X, X4))
2: Preprocessing: Resample and normalize; form X « {X,, X, X4}
3: Encoding and fusion: Extract encoder features and fuse phases via attention
4. Diffusion refinement: Apply learned denoising to stabilize latent representation
5: Decoding: Reconstruct mask with skip-connected decoder to

obtain P 6:  Postprocessing: Optionally remove small components
and fill holes 7: end procedure

4 Experimental Results

This section demonstrates a complete assessment of the suggested DiffuPan framework with the aid of
the Pancreas-CT dataset the results offer insights into characteristics, architectural and training settings,
and the like, through various types of analysis such as comparative performance, ablation studies,
efficiency, robustness, statistical validation, and error analysis.

4.1 Dataset Description

The publicly accessible Pancreas-CT dataset from The Cancer Imaging Archive (TCIA) was used for the
experiments. There are three different phases in this dataset, and these are arterial, venous, and delayed
phases. The total number of patients in the dataset is 300, their axial slices are about 80,000. The
annotations for tumor and pancreas masks which are the signs of high-quality are the support for the
pixel-level supervision in segmentation jobs; that is, each slice has an accompanying high-quality
annotation provided in two regions, and their annotations have already been done through pathology.
Details of the dataset are presented in the form of a Table 1, where various aspects related to the dataset
such as modality, imaging phases, patient number, slice number, and annotation type are all
comprehensively dealt with. The tremendous dataset with detailed annotations and standardized
imaging quality represents it as a very dependable tool for a scientific community working in the domain

of pancreatic cancer imaging.

SGS Initiative, VOL. 1 NO .2 (2026): LGPR



Table 1: Dataset Description

Dataset Modality Phases No. of Patients | No. of Annotation Type
Slices
Pancreas-CT |Contrast-Enhanced| Arterial, Venous, 300 80,000 | Tumor + Pancreas
(TCIA) CcT Delayed Masks

4.2 Architectural Configuration

The architecture suggested for DiffuPan is an encoder-decoder type, uniquely designed to handle multi-
phase contrast-enhanced CT imaging data. The input slices were resized to 256 x 256 pixels and phase-
aligned before being joined together. A single-channel matrix of pixels to represent the images was
created, one channel for each arterial, venous, and delayed phases. By utilizing the above-mentioned
channels fed into the input layer, the network can be directed to learn the contrast from different points
of view. The residual blocks that are embedded in the encoder assist in stabilizing gradient flow and
preserving fine structures through five resolution levels. The decoder, on the other hand, uses the skip
connections to bring back the spatial detail lost through resolutions and to match the scales of the
encoder. Besides, the cross-phase attention mechanism works in defining and modulating the
cooperation between the phases, whereas the self-attention assists in learning and refining the intra-
phase relationships. The model’s space has been completely restricted to a latent dimensionality to 512
which allows better and cost-effective learning to happen. Another important point is that GELU, which
stands for Gaussian Error Linear Unit ad Layer Normalization have been used for activations and
normalization respectively as they help in the stabilization of the training procedure across varied batch
sizes. All of these can be better observed in the comparison of the principal architectural choices
presented in Table 2.
Table 2: Architectural Configuration

Component Configuration Details

Input Size 256 x 256 pixels

Input Channels Multi-phase CT slices (Arterial, Venous, Delayed)
Encoder Backbone Diffusion-based U-Net variant with residual connections
Number of Encoder Layers 5 (down-sampling path)

Number of Decoder Layers 5 (up-sampling path with skip connections)

Attention Mechanism Cross-phase attention + self-attention blocks

Latent Dimensionality 512

Activation Function GELU

Normalization Layer Normalization

4.3 Training Configuration

Optimization uses AdamW with decoupled weight decay to promote generalization under explicit
regularization. The learning rate is initialized at (1 X 10™%) and scheduled with cosine annealing to yield
a smooth decay that avoids abrupt plateaus. Supervision employs a hybrid objective that combines Dice,
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Focal, and SSIM losses: Dice improves overlap for small lesions, Focal limits the influence of easy
negatives in imbalanced settings, and SSIM preserves local structure near boundaries. A mini-batch size
of 16 provides stable gradients within available memory. Training runs for 200 epochs to achieve
convergence while controlling overfitting. The implementation is in PyTorch 2.2 to ensure reproducibility
and efficient operator support. Table 3 summarizes the full training configuration.

Table 3: Training Configuration

Component Configuration Details

Optimizer AdamW

Initial Learning Rate 1 X 10™* (cosine annealing scheduler)
Loss Functions Hybrid (Dice + Focal + SSIM)

Batch Size 16

Training Epochs 200

Framework PyTorch2.2

4.4 Comparative Tumor Segmentation Results

Table 4 reports tumor segmentation results for representative baselines and DiffuPan. Classical
convolutional models such as U-Net and Attention U-Net yield moderate Dice and AUC, whereas hybrid
and transformer-based variants including Swin-UNet, DeepLabV3+, and TransUNet show better overlap
and discrimination. The nnU-Net baseline reaches a Dice of 88.2 percent. DiffuPan achieves highest
performance in terms of Dice of 92.3 percent and Area Under the Curve (AUC) of 0.97, which represents
balanced precision and recall value with an enhanced class separability. The improvement over the
state-of-the-art model, nnU-Net, shows the contribution of multi-phase fusion and diffusion-guided
representation learning. Figure 2 provides some qualitative examples that are consistent with these

quantitative gains.

4.5 Phase-Wise Ablation Study

The effect of contrast-phase composition on tumor segmentation is summarized in Table 5. Among the
phases, single phase devices have the lowest overlap with the venous class and slightly more with the
arterial class. Complementary arterial and venous induction of Dice and AUC respectively is in line with
the additive vascular and parenchymal signals. The delayed phase addition leads to further increase,
which indicates that the washout dynamics contribute to marginal resolution. The multi-phase fusion is
giving the best results (Dice = 92.3 percent and AUC = 0.97) with better robustness and better class
separability when the information of the arterial, venous and delayed are modelled jointly.
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Table 4: Comparative tumor segmentation results on Pancreas—CT (TCIA).

Model Dice (%) Precision (%) Recall (%) F1-Score (%) AUC
U—Net (baseline) 78.5 80.2 76.9 78.5 0.86
Attention U-Net 81.7 824 80.8 816 0.89
Swin—UNet 84.9 85.1 84.6 84.8 0.91
DeeplLabV3+ 85.6 86.0 85.1 85.5 0.92
TransUNet 87.4 88.0 87.0 87.2 0.93
nnU-Net 88.2 89.0 88.1 88.5 0.94
DiffuPan (Proposed) 92.3 93.1 92.0 92.5 0.97
100 Comparative Tumor Segmentation Results
I Dice
Il Precision
m Recall
95 4 F1-Score

92.3 g7 092-5

Performance (%)

U-Net Attention U-Net Swin-UNet DeeplLabV3+ TransUNet nnU-Net DiffuPan

Figure 2: Comparative tumor segmentation results across different models.

4.6 Computational Efficiency

Table 6 reports model size and runtime in terms of parameter count, training time per epoch, and per-
slice inference latency. Classical encoder—decoder designs have small footprints and fast inference but
limited representational capacity. Transformer-augmented models increase parameters and latency
because attention scales with feature resolution. DiffuPan presents a balanced configuration, combining
a moderate parameter budget with competitive training speed and low inference time. This profile
supports deployment under throughput and memory constraints while preserving the accuracy gains
documented earlier and illustrated in Figure 3.
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Table 5: Phase-wise ablation on Pancreas-CT (TCIA)

Phase Combination Dice (%) AUC
Arterial only 82.4 0.88
Venousonly 83.1 0.89
Arterial + Venous 87.2 0.92
Arterial + Venous + Delayed 89.0 0.94
Multi-Phase Fusion (Proposed) 92.3 0.97

Table 6: Computational efficiency on Pancreas-CT (TCIA)

Model Parameters (M) Training Time/Epoch (min) Inference Time/Slice (ms)
U-Net (baseline) 345 1.8 12
Attention U-Net 38.7 2.0 13
Swin-UNet 62.1 2.5 18
DeeplabV3+ 44.2 2.2 16
TransUNet 65.8 2.7 20
nnU-Net 85.4 3.1 22
DiffuPan (proposed) 52.3 2.3 14

4.7 Loss Function Contribution Study

Table 7 reports the influence of individual and composite loss terms on segmentation quality, evaluated
using Dice, Precision, Recall, Fl1-score, and AUC. Single-term objectives produced only moderate
accuracy. Dice alone reached a Dice of 88.1 percent, indicating effective overlap optimization with
limited resilience to class imbalance. Focal loss increased Precision and Recall by down-weighting easy
cases, yielding an F1-score of 89.2 percent. SSIM preserved structural detail but underperformed relative
to Dice and Focal when used in isolation. In pairwise combinations, the effectiveness of our results
improved greatly. The best outcome with two terms was obtained with Dice and Focal working together,
with a dice coefficient of 90.6 percent and an AUC of 0.96. The combination of Dice and SSIM as well as
Focal and SSIM also resulted in better alighment of the boundary and higher lesion sensitivity not
minding the setting with a single term, though these both were not as effective as the combination of
Dice and Focal. The three-term hybrid objective was found to be superior the others Performance-wise
as it got the highest Dice (92.3%) and the best AUC (0.97). The research findings have shown that the
enforcement of the three methods— maximizing overlap, rebalancing class weights, and conserving
structural features— yields more uniform segmentation, a trend which can also be visually corroborated

by the illustrations given in Figure 4.
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Computational Efficiency Comparison
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Figure 3: Computational efficiency comparison in terms of parameters, training, and inference.

Table 7: Contribution of different loss functions to segmentation performance.

Loss Setting Dice (%) Precision (%) Recall (%) F1-Score (%) AUC
Dice only 88.1 89.0 87.3 88.1 0.94
Focal only 89.0 90.8 87.6 89.2 0.95
SSIM only 87.2 87.9 86.8 87.3 0.93
Dice + Focal 90.6 914 90.0 90.7 0.96
Dice + SSIM 89.8 90.3 89.2 89.7 0.95
Focal + SSIM 90.1 91.5 88.9 90.1 0.95
Dice + Focal + SSIM (Proposed) 92.3 93.1 92.0 92.5 0.97

4.8 Robustness to Noise and Perturbations

A thorough assessment of robustness was conducted to measure the efficiency under the degradations
frequently appearing in clinical imaging. It can be seen in Table 8 that the results of testing under light,
noise, blur, and others are shown. For instance, the model obtained 92.3% Dice and 0.97 AUC on clean
inputs. Stating that this indicates high tolerance to acquisition artifacts, reduction of Dice was to 91.2%
by adding Gaussian noise at a standard deviation of 0.05. Additionally, the usage of 3x3 kernel to
simulate motion blur caused Dice to drop to 90.8%, hence keeping the spatial connectivity was the main
concern while difficulty in pixel-to-pixel matching was lessened. The behavior was further analyzed
under contrast modifications from the least to the most extreme levels of +20%, with the model still
achieving Dice scores exceeding 91%, indicating strong robustness to enhancement procedures. Finally,
the model was also robust against the later perturbation type which was of the largest intensity. Random
occlusion that occurred in 5% of pixels affected Dice the most, bringing its value to 90.4% by the end of
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the test. Nevertheless, the model was able to maintain general good performance since its overall
accuracy was greater than 90%. Overall, the performance continues to be strong and uniform, with
results showing that the model remains stable amid different disturbances or noise, highlighting its
flexibility across various imaging environments.

Loss Function

Dice only - 88.10 89.00 87.30 88.10 -
-80
Focal only - 89.00 90.80 87.60 89.20 -
SSIM only - a7.20 87.90 86.80 87.30 60
=)
§= ]
B 5
o Dice + Focal - 90.60 91.40 90.00 90.70 E
o
a £
g a0 &
-
Dice + SSIM - 89.80 20.30 89.20 89.70
Focal + SSIM - 90.10 91.50 88.90 90.10 - 20

Dice + Focal +

SSIM (Proposed) =iy 93.10 92.00 92.50 0.97
Dice (%) Precision (%)  Recall (%) F1-Score (%)
Metrics

Figure 4: Impact of different loss settings on segmentation performance

Table 8: Robustness evaluation under noise and perturbation conditions

Perturbation Type Dice (%) AUC
No noise (clean images) 92.3 0.97
Gaussian Noise (o = 0.05) 91.2 0.96
Motion Blur (3x3 kernel) 90.8 0.95
Contrast Variation (£20%) 91.0 0.95
Random Occlusion (5%) 90.4 0.94

4.9 Statistical Significance Analysis

To assess if the benefits were genuinely due to random fluctuations, pairwise differential t-tests were
conducted between DiffuPan and each baseline for comparison. The table 9 highlights the differences
in Dice improvements, the corresponding p-values, and their interpretations. When DiffuPan was
compared with U-Net and Attention U-Net, it had an increase in Dice by 13.8 and 10.6% points, P<0.001
for both. The improvement over Swin-UNet was 7.4% points with P<0.01. For TransUNet and nnU-Net,

the percent point increases were 4.9 and 4.1 respectively, each with p<0.05. In all cases, the differences
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were statistically significant, which suggests that DiffuPan’s advantage is not coming from purely random
chance. The qualitative images in Figure 5 are supportive of the statistical results mentioned above.

Table 9: Statistical significance of Dice improvements using paired t-test.

Comparison Dice Improvement (%) p-value
DiffuPan vs U-Net +13.8 <0.001
DiffuPan vs Attention U-Net +10.6 <0.001
DiffuPan vs Swin-UNet +7.4 <0.01
DiffuPan vs TransUNet +4.9 <0.05
DiffuPan vs nnU-Net +4.1 <0.05

Statistical Significance of Dice Improvements

17.5 4
N 13.8%
15.0 (p <0.001)
§E 12.5
- 10.6%
= (p <0.001)
o
E 10.0
>
2 7.4%
o (p <0.01)
E 7.5 4
]
] 4.9%
a (p <0.05) 4.1%
5.0 {p <0.05)
2.5 |
0.0 - T
DiffuPan vs DiffuPan vs DiffuPan vs DiffuPan vs DiffuPan vs
U-Net Attention U-Net Swin-UNet TransUNet nnU-Net

Figure 5: Statistical significance of Dice improvements over baselines.

4.10 Error Analysis

A thorough examined voxel-level reliability by separating false positives from false negatives. Table 10
reports the proportion of misclassified pixels for each model. U-Net showed the highest error, with 8.7
percent false positives and 12.3 percent false negatives, indicating limited sensitivity and imprecise
boundary localization. Attention U-Net reduced both rates through spatial weighting to 7.5 percent false
positives and 10.8 percent false negatives. Transformer-based models, including Swin-UNet and
TransUNet, achieved additional reductions by modeling long-range context, with false negatives

consistently below 9 percent. Among the conventional baselines, nnU-Net performed best, reaching 5.0
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percent false positives and 8.2 percent false negatives. DiffuPan yielded the lowest errors overall at 3.2
percent false positives and 4.5 percent false negatives. These findings indicate that multi-phase fusion
and diffusion-guided representation learning suppress spurious activations and decrease missed tumor

regions. Figure 6 provides qualitative examples that are consistent with these quantitative results.

Table 10: Error analysis of false positives and false negatives on Pancreas-CT (TCIA)

Model False Positives (%) False Negatives (%)
U-Net (baseline) 8.7 12.3
Attention U-Net 7.5 10.8
Swin-UNet 6.2 9.5
DeeplabV3+ 6.0 9.0
TransUNet 54 8.6
nnU-Net 5.0 8.2
DiffuPan (proposed) 3.2 4.5

Error Analysis: False Positives vs False Negatives

—&— False Positives (%)

12 4 —8— False Negatives (%)

10

Error Rate (%)

U-Net Attention U-Net Swin-UNet DeeplLabV3+ TransUNet nnU-Net DiffuPan

Figure 6: Error analysis showing false positive and false negative rates.

5 Discussion

The experimental study examined multi-phase contrast-enhanced CT for pancreatic tumor
segmentation across classical, hybrid, and transformer baselines. Convolutional models achieved
moderate accuracy, with U-Net and Attention U-Net recording Dice scores of 78.5 percent and 81.7

percent. Transformer-augmented variants improved overlap, yielding 84.9 percent for Swin-UNet and
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87.4 percent for TransUNet. The strongest baseline, nnU-Net, reached 88.2 percent. DiffuPan surpassed
all comparators with a Dice of 92.3 percent, Precision of 93.1 percent, Recall of 92.0 percent, and an
AUC of 0.97, indicating that diffusion-guided representation learning combined with multi-phase fusion
produces a more discriminative feature space for tumor boundary capture. Phase composition played a
central role. Single-phase training produced lower accuracy, with Dice of 82.4 percent for arterial and
83.1 percent for venous inputs. Combining arterial and venous raised the Dice to 87.2 percent, and
adding delayed phase improved it to 89.0 percent. Full three-phase fusion obtained the highest Dice of
92.3 percent and an AUC of 0.97, which points to the value of temporal enhancement dynamics for
delineation. Computational profiling showed that U-Net was lightweight at 34.5M parameters with 12
ms per-slice inference, while nnU-Net used 85.4M parameters and 22 ms. TransUNet required 65.8M
parameters and 20 ms. DiffuPan attains a practical balance between accuracy and efficiency, using 52.3
million parameters, 2.3 minutes per training epoch, and 14 ms per-slice inference, which aligns with
typical throughput and memory limits. Loss design shaped both overlap quality and detection reliability.
With single-term objectives, Dice, Focal, and SSIM losses produced Dice scores of 88.1 percent, 89.0
percent, and 87.2 percent. Pairwise combinations improved performance; Dice plus Focal reached 90.6
percent with an AUC of 0.96. The three-term hybrid objective achieved the strongest results at 92.3
percent Dice and 0.97 AUC, reflecting complementary effects of overlap maximization, class
reweighting, and structure preservation. Robustness tests under Gaussian noise, motion blur, contrast
shifts, and random occlusion yielded Dice values of 91.2 percent, 90.8 percent, 91.0 percent, and 90.4
percent, maintaining accuracy above 90 percent across perturbations. Statistical analysis indicated that
the gains were not due to chance. Paired t-tests showed improvements of 13.8 percentage points over
U-Net and 10.6 percentage points over Attention U-Net with p<0.001, a 7.4 point margin over Swin-
UNet with p<0.01, and advantages of 4.9 and 4.1 points over TransUNet and nnU-Net with p < 0.05.
Error analysis was consistent with these results: DiffuPan reduced false positives to 3.2 percent and false
negatives to 4.5 percent, compared with 8.7 percent and 12.3 percent for U-Net. The evidence indicates
that diffusion-guided learning, multi-phase fusion, an efficient architecture, and hybrid supervision
deliver measurable and statistically supported improvements in accuracy, efficiency, and robustness for

pancreatic tumor segmentation.

Although DiffuPan showed a considerable increase in accuracy and robustness, a few bottlenecks still
persist. The first bottleneck is the usage of a single public dataset for the evaluation that restricts us from
drawing conclusions about the general applicability of the model in different institutions, scanners, and
image acquisition protocols. The second bottleneck is that the method is not lightweight, and thus it
requires higher computational resources compared to the lightweight baselines, which may pose a
problem in deploying it to resource-constrained clinics. Third, the focus of the research was on
segmentation, and other related tasks such as staging, resectability estimation, or treatment planning
were not evaluated. Future work should include multi-institutional validation with heterogeneous
imaging, architectural and hardware-level optimization to reduce cost and latency, and integration with
clinical decision support to evaluate end-to-end impact on patient management.
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6 Conclusion

This

work presented DiffuPan, a diffusion-based multi-phase framework for pancreatic tumor

segmentation in contrast-enhanced CT. The model achieved a Dice of 92.3%, Precision of 93.1%, Recall of

92.0%, and an AUC of 0.97, surpassing strong comparators including nnU-Net at 88.2% Dice and
TransUNet at 87.4% Dice. Error rates declined to 3.2% false positives and 4.5% false negatives, indicating
concurrent gains in sensitivity and specificity. Multi-phase fusion offered a measurable advantage over

single-phase inputs, increasing Dice by as much as 9.2%. The study has two main constraints. First, the

evaluation used a single public dataset, which limits evidence of generalization across institutions and

acquisition protocols. Second, computational cost exceeds that of lightweight baselines, which may hinder

use in resource-constrained settings. Future work will extend validation to multi-institutional cohorts,

explore cross-domain adaptation to reduce scanner variability, and explore model compression and

clinical decision support integration for improved real-world applicability.
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